深度学习2.0-2.tensorflow的基础操作之创建Tensor及应用场景

1.创建Tensor

1.通过numpy、list转换得到

list-逻辑上要说得通
在这里插入图片描述

2.tf.zeros

传入的是shape
在这里插入图片描述
在这里插入图片描述

3.tf.ones

传入的是shape
在这里插入图片描述

4.fill填充

在这里插入图片描述

5.Normal-随机化初始化

在这里插入图片描述

6.Uniform-均匀分布

在这里插入图片描述

7.随机打散

在这里插入图片描述

8.tf.constant

在这里插入图片描述

2.不同Tensor的典型应用

在这里插入图片描述

1.scalar-标量

在这里插入图片描述
在这里插入图片描述

2.Vector-向量

在这里插入图片描述
在这里插入图片描述

3.Matrix-矩阵

在这里插入图片描述
在这里插入图片描述

4.Dim=3 Tensor

在这里插入图片描述
在这里插入图片描述

5.Dim=4 Tensor

在这里插入图片描述
在这里插入图片描述

6.Dim=5 Tensor

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值