pandas
文章平均质量分 55
pandas
哎呦-_-不错
读书太少而想太多
展开
-
pandas—pandas.crosstab交叉表
文章目录官方文档pandas.crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name='All', dropna=True, normalize=False)描述:绘制两个或多个因子的交叉表index, columns是必选参数,分别是行索引、列索引crosstab归根结底就是按照指定的index和columns统计数据帧中出现(原创 2021-04-11 12:59:01 · 1353 阅读 · 0 评论 -
pandas—pd.merge通过键来联接数据集
文章目录根据连接键进行合并根据索引合并官方文档《利用python进行数据分析》数据规整根据连接键进行合并 合并或连接操作通过一个或者几个键连接行来联合数据集。pandas中的merge函数主要用于将各种join操作算法运用到你的数据上pd.merge( left, right, how: str = 'inner', on=None, left_on=None, right_on=None, left_index: bool = F原创 2021-04-07 11:15:27 · 430 阅读 · 2 评论 -
pandas—pandas.DataFrame.iterrows的使用
原网址描述以 (index, Series)的形式迭代DataFrame的每一行,是一个生成器对象。index:行索引Series:每一行数据原创 2021-04-06 23:15:52 · 520 阅读 · 4 评论 -
pandas—显示行索引与列索引(数组或者列表)
import pandas as pddf = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]}, index=[1,2,3,4,5])# 显示dataFrameprint(df) BoolCol attr1 1 222 2 333 3 224 3 445 4 66显示列索引原创 2021-01-25 17:19:01 · 5819 阅读 · 0 评论 -
pandas—fillna
文章目录1.pd.Series.fillna官方案例2.pd.DataFrame.fillna官方案例1.pd.Series.fillnaSeries.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)描述按照指定的方法填充NA/NaN值参数value : scalar, dict, Series, or DataFrame标量值或字典对象用于填充缺失值要填充的值,该原创 2021-01-25 11:01:50 · 3349 阅读 · 1 评论 -
pandas—dropna
文章目录1. pd.Series.dropna官方案例2 .pd.DataFrame.dropna官方案例1. pd.Series.dropnaSeries.dropna(axis=0, inplace=False, how=None)描述返回删除了缺失值的新Series参数axis : {0 or ‘index’}, default 0只有一个轴可以从中删除值inplace : bool, default False如果为True,则就地修改返回None如果为False,则原创 2021-01-25 10:23:55 · 452 阅读 · 0 评论 -
pandas—pd.DataFrame.sample
文章目录pd.DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)描述对数据集进行随机抽样,从对象轴返回随机的样本,您可以使用random_state进行再现参数n : int, optional从对应轴要抽取的行数,不能与frac一起使用,如果frac = None,则默认= 1frac : float, optional从对应轴抽取行的比例,原创 2021-01-20 19:05:22 · 677 阅读 · 0 评论 -
pandas—pandas.read_parquet
文章目录pandas.read_parquet(path, engine='auto', columns=None, use_nullable_dtypes=False, **kwargs)描述从文件路径加载一个parquet对象,返回一个DataFrame参数path : str, path object or file-like object文件路径engine : {‘auto’, ‘pyarrow’, ‘fastparquet’}, default ‘auto’如果为“自原创 2021-01-19 22:06:30 · 9185 阅读 · 5 评论 -
pandas—pandas.DataFrame.query与pandas.DataFrame.reset_index
文章目录1.pandas.DataFrame.query官方案例2.pandas.DataFrame.reset_index官方案例将reset_index与MultiIndex一起使用1.pandas.DataFrame.query官网DataFrame.query(expr, inplace=False, **kwargs)描述使用布尔表达式查询DataFrame的列参数expr : str要计算的查询字符串inplace : bool查询是应该修改数据还是返回修改后的副原创 2021-01-17 12:12:59 · 619 阅读 · 0 评论 -
pandas——pd.DataFrame.iloc()
pandas.DataFrame.iloc()纯基于位置的整数索引输入格式:一个整数列表或数组,如[4,3,0]。一个带有int类型的slice对象,例如1:7。一个布尔值数组。一个具有一个参数的可调用函数,返回索引案例mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, {'a': 100, 'b': 200, 'c': 300, 'd': 400}, {'a': 1000, 'b': 2000, 'c': 30原创 2021-01-11 10:32:42 · 6367 阅读 · 0 评论 -
pandas-pandas.Categorical
文章目录pandas.Categorical案例pandas.Categoricalpandas.Categorical(values, categories=None, ordered=None, dtype=None, fastpath=False)作用是:表示一个类别变量 - Parameters(参数) values : list-like 类别的值;如果给出类别,则不在类别中的值将被NaN代替。 categories : Index-like (unique), optional原创 2021-01-06 22:26:42 · 311 阅读 · 0 评论 -
pandas -读取文件时,加入列索引
Data = pd.read_csv(filepath,header=1,names=['temperature'])names应该是括号,而不是{},{}会随机选取,而[]则有顺序原创 2020-12-08 20:50:32 · 1660 阅读 · 0 评论 -
pandas - pd.date_range-生成时间索引
pandas.date_range(start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs)作用是返回固定频率的时间索引参数:start:左边界用于生成日期end:右边界用于生成日期periods:周期数freq:频率字符串可以有多个,例如“ 5H”。tz:返回本地化的DatetimeIndex的时区名称normalize:将开始/结原创 2020-12-08 20:25:10 · 1048 阅读 · 0 评论 -
python ndarray与pandas series相互转换,ndarray与dataframe相互转换
文章目录链接原创 2020-12-08 18:48:01 · 982 阅读 · 0 评论 -
pandas - AttributeError: Series object has no attribute reshape
Series数据类型没有reshape函数解决办法:1.用values方法将Series对象转化成numpy的ndarray,再用ndarray的reshape方法.lael = label.values.reshape(-1,1)2.直接转换成arraylabel = np.array(label)label = label.reshape(-1,1)原创 2020-11-14 14:50:47 · 1025 阅读 · 0 评论 -
pandas中replace的用法
dataframes/series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')作用:用value替换to_replace中给定的值数字直接写空值:np.NaN链接原创 2020-11-13 22:25:06 · 1254 阅读 · 0 评论