numpy
numpy翻译
哎呦-_-不错
读书太少而想太多
展开
-
numpy—np.info(function)
描述从命令行获得numpy中函数的文档案例这种生僻一点,在官网不好查的也可以直接显示原创 2021-03-02 21:47:03 · 524 阅读 · 0 评论 -
numpy—np.argpartition
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None)描述简单点理解就是在数组a的前kth-1个元素都比第kth-1个元素小,后kth-1个元素都比第kth-1个元素大,但是前面后面是没有顺序关系的,下面根据案例代入,一试便会案例...原创 2021-03-02 21:18:11 · 576 阅读 · 0 评论 -
numpy—np.tensordot
文章目录numpy.tensordot(a, b, axes=2)描述沿指定的轴计算张量点积参数a, b : array_like张量axes :int or (2,) array_like如果为整数,则按顺序,对a的最后N个轴和b的前N个轴求和。相应轴的尺寸必须匹配如果为两个array,则为要求和的轴列表,第一个序列适用于a,第二个序列适用于b。两个元素array_like必须具有相同的长度。输出:输入张量的点积Note典型案例...翻译 2021-02-26 18:58:29 · 921 阅读 · 0 评论 -
numpy—np.lib.stride_tricks.as_strided
文章目录lib.stride_tricks.as_strided(x, shape=None, strides=None, subok=False, writeable=True)描述创建具有给定形状和步幅的数组视图参数x : 输入数组shape :sequence of int, optional新数组的形状。默认为x.shapestrides :sequence of int, optional新数组的步长。默认为x.strides。subok :bool, optional翻译 2021-02-25 11:21:38 · 1047 阅读 · 0 评论 -
numpy—np.repeat、np.roll
文章目录1.np.repeat2.np.roll1.np.repeatnumpy.repeat(a, repeats, axis=None)描述重复数组的元素参数a:输入数组repeats :int or array of ints每个元素重复的次数,以所给的axis轴进行广播axis :int, optional用以重复的轴、默认情况下横向广播官方样例2.np.rollnumpy.roll(a, shift, axis=None)描述沿着给定的轴滚动元素翻译 2021-02-25 10:59:27 · 334 阅读 · 1 评论 -
numpy—np.random.multivariate_normal
np.random.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)描述从多元正态分布中抽取随机样本,组成一个N维的数组。并返回该数组。参数mean : 1-D array_like, of length Nn维分布的平均值cov : 2-D array_like, of shape (N, N)分布的协方差矩阵协方差矩阵必须是对称的且半正定矩阵的size : int or tup翻译 2021-02-03 20:18:11 · 1582 阅读 · 0 评论 -
numpy—np.diag(v, k=0)
numpy.diag(v, k=0)描述提取对角线上的数组或者构造一个对角线数组参数v : array_like如果v是一个二维数组,则返回其与k对应的对角线上的数组。如果v是一个一维数组,则返回一个二维数组,其中v位于与k对应的对角线上k : int, optional对角线。默认值为0。使用k>0为主对角线以上的对角线,k<0为主对角线以下的对角线返回提取的对角线上的数组或者构造的对角线数组案例cov1_fact = np.diag((1, 2翻译 2021-02-03 19:55:14 · 391 阅读 · 0 评论 -
numpy—np.nan_to_num
numpy.nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None)描述用零和大的有限数替换NaN(默认行为)或者用户使用nan、posinf和neginf关键字来定义数字参数x : scalar or array_like输入数据copy : bool, optionalif True,则创建x的副本if False,则在原对象上替换nan : int, float, optional用于填充NaN值的值。原创 2021-01-26 15:33:46 · 18346 阅读 · 0 评论 -
numpy—np.isnan
np.isnannumpy.isnan(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])描述以元素方式测试NaN,并以布尔数组的形式返回结果参数x : array_like输入数组out : ndarray, None, or tuple of ndarray and None, optionalA location原创 2021-01-26 15:14:45 · 3325 阅读 · 0 评论 -
numpy—np.logspace
文章目录1.np.logspace2.官例1.np.logspacenumpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)描述返回在对数刻度上平均间隔的数字在线性空间中,序列开始于base** start,结束于基数base** stop参数start : array_likebase ** start是序列的开始值stop : array_likebase ** st原创 2021-01-17 14:25:57 · 1301 阅读 · 0 评论 -
numpy—np.eye、np.diag与np.tile
文章目录1.np.eye实例2.np.diag实例1.np.eyenumpy.eye(N, M=None, k=0, dtype=<class 'float'>, order='C')描述返回一个二维数组,对角线上为1,其他地方为0参数N : int输出的行数M : int, optional输出中的列数。如果为None,默认为Nk : int, optional对角线索引:0(默认)表示主对角线,正值表示上对角线,负值表示下对角线。d : type,原创 2021-01-15 21:40:30 · 1090 阅读 · 0 评论 -
numpy——flat与flatten
文章目录1.flat—数组元素迭代器2.flatten—返回一份数组拷贝,对拷贝所做的修改不会影响原始数组1.flat—数组元素迭代器import numpy as np a = np.arange(9).reshape(3,3) print ('原始数组:')for row in a: print (row) #对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器:print ('迭代后的数组:')for element in a.flat: p原创 2021-01-10 22:20:17 · 2283 阅读 · 0 评论 -
numpy——numpy.corrcoef
numpy.corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>)返回皮尔逊积差相关系数参数: x : array_like 包含多个变量和观测值的一维或二维数组。x的每一行代表一个变量, 每一列代表对所有这些变量的观察 y : array_like, optional 一组额外的变量和观察结果。y和x有相同的形状。 rowvar : bool, optional 如果rowvar原创 2021-01-07 11:24:11 · 639 阅读 · 0 评论 -
numpy——numpy.ravel(a,order=‘C)
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图,修改会影响原始数组参数numpy.ravel(a, order='C')order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。案例import numpy as np a = np.arange(8).reshape(2,4) print ('原数组:')print (a)print ('\n') print ('调用 ravel 函数之原创 2021-01-07 11:04:40 · 590 阅读 · 0 评论 -
numpy - np.append
numpy.append(arr, values, axis=None)将值附加到数组的末尾arr:将值附加到此数组的副本中values:这些值将附加到arr的副本中。它必须具有正确的形状(与arr相同的形状,但不包括轴)。如果未指定轴,则值可以是任何形状,并且在使用前将被展平。axis:沿其附加值的轴。如果未指定轴,则在使用前将arr和值都展平返回:arr的副本,其值附加到axis,生成一个新的数组...原创 2020-11-30 11:30:05 · 282 阅读 · 0 评论 -
numpy - np.asarray
numpy.asarray(a, dtype=None, order=None)作用是将输入转换为数组参数: a:输入数据,可以转换为数组的任何形式。这包括列表,元组列表,元组,元组,列表元组和ndarray。 dtype:默认情况下,从输入数据中推断出数据类型 order:是使用行优先(C风格)还是列优先(Fortran风格)内存表示形式。默认为“ C”。返回: 如果输入已经是具有匹配dtype和order的ndarray,则不执行复制。 如果a是ndarray的子类,则返回基类n原创 2020-11-28 21:01:56 · 12588 阅读 · 0 评论 -
numpy - np.where
numpy.where(condition[, x, y])根据条件从x或y中选择返回元素参数: condition:如果为True,则产生x,否则产生y x,y:从中选择的值返回: 一个数组,其中条件为True是x,其他的为y原创 2020-11-28 11:38:51 · 191 阅读 · 0 评论 -
numpy - np.reshape:将二维数组转变三维数组
生成几个比较大的数组,需要将数组最后一个轴的行转换成列原来数组的格式为(5077, 48)(5077, 24)(5077, 12)(5077, 8)(5077, 6)x0 = np.reshape(x0,(5077,48,1))x1 = np.reshape(x1,(5077,24,1))x2 = np.reshape(x2,(5077,12,1))x3 = np.reshape(x3,(5077,8,1))x4 = np.reshape(x4,(5077,6,1))即可转变成原创 2020-11-25 21:46:24 · 6688 阅读 · 2 评论 -
numpy-np.Inf
np.Inf 正无穷大的浮点表示 常用于数值比较当中的初始值原创 2020-11-24 13:47:04 · 3980 阅读 · 2 评论 -
numpy-np.random.choice
numpy.random.choice(a, size=None, replace=True, p=None)作用是:从给定的一维数组生成随机样本a:如果是ndarray,则会从其元素生成随机样本。如果为int,则生成随机样本,就像a为np.arange(a)size:输出形状。如果给定的形状是例如(m,n,k),则绘制m * n * k个样本。默认值为无,在这种情况下,将返回一个值。replace:样本是否更换p:与a中每个条目关联的概率。如果未给出,则样本将假定a中所有条目的均匀分布返原创 2020-11-17 19:45:19 · 139 阅读 · 0 评论 -
numpy-np.random.permutation
numpy.random.permutation(x)作用是:随机置换序列,或返回置换范围。如果x是多维数组,则仅沿其第一个索引随机排列如果x是整数,则随机置换np.arange(x)。如果x是一个数组,请进行复制并随机随机排列这些元素返回:随机置换后的序列或数组...原创 2020-11-17 19:17:31 · 600 阅读 · 0 评论 -
numpy-np.concatenate
numpy.concatenate((a1, a2, ...), axis=0, out=None)作用:沿现有轴连接一系列数组a1, a2, …:数组必须具有相同的形状,除了对应于轴的尺寸(默认为第一个)axis:沿其连接的轴。如果“轴”为“无”,则数组在使用前将展平返回连接后的数组...原创 2020-11-17 18:50:19 · 195 阅读 · 0 评论 -
numpy-np.isin
numpy.isin(element, test_elements, assume_unique=False, invert=False)计算test_elements中的元素,仅在element上广播。返回与element具有相同形状的布尔数组,如果element的元素在test_elements中,则返回True,否则返回False。参数:element:输入test_elements:用于测试每个element的值。如果它是array或array_like,则将其展平。assume_un原创 2020-11-17 17:24:41 · 791 阅读 · 0 评论 -
np.c_的用法
当列表中是两个ndarry对象时,按列连接原创 2020-08-27 21:27:14 · 1107 阅读 · 0 评论 -
numpy 常用产生随机数方法
转载:https://blog.csdn.net/m0_37804518/article/details/78490709转载:https://blog.csdn.net/houyanhua1/article/details/87722398文章目录1、np.random.uniform的用法2、np.random.random_sample的用法3、np.random.rand的用法4、np.random.randint的用法5、np.random.random_integers的用法6.np.ran原创 2020-07-19 09:26:37 · 911 阅读 · 0 评论 -
numpy.linspace详解
转载:https://blog.csdn.net/anan15151529/article/details/102630841numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)在指定的间隔内返回均匀间隔的数字。返回num均匀分布的样本,在[start, stop]。这个区间的端点可以任意的被排除在外Parameters(参数):start : scalar(标量),序列的起始点stop :原创 2020-07-18 09:25:26 · 346 阅读 · 0 评论 -
numpy—np.stack、np.hstack、np.vstack
文章目录np.hstack(tup)tup:除了第二轴之外,数组必须具有相同的形状,一维数组可以是任何长度水平(按列)顺序堆叠数组。这等效于沿第二个轴的串联,除了一维数组沿第一个轴的串联。这个函数对于三维以下的数组最有意义。例如,对于具有高度(第一轴)、宽度(第二轴)和r/g/b通道(第三轴)的像素数据。concatenate、stack和block函数提供更通用的堆叠和拼接操作。a = np.array((1,2,3))b = np.array((2,3,4))np.hstack((a,原创 2020-11-13 19:46:28 · 636 阅读 · 0 评论