《百面机器学习》
文章平均质量分 90
为实习准备
哎呦-_-不错
读书太少而想太多
展开
-
百面机器学习—13.L1正则化与稀疏性
文章目录1. 为什么希望模型参数具有稀疏性?2. L1正则化使得模型参数具有稀疏性的原理是什么?角度:解空间形状1. 为什么希望模型参数具有稀疏性? 稀疏性,说白了就是模型的很多参数是0。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。在实际应用中,机器学习模型的输入动辄几百上千万维,稀疏性就显得更加重要。2. L1正则化使得模型参数具有稀疏性的原理是什么?角度:解空间形状 在二维的情况下,黄色的部分是L2和L1正则项约束后的解空间,绿色的等高原创 2021-05-11 14:33:17 · 660 阅读 · 4 评论 -
百面机器学习—12.优化算法
文章目录引言一、损失函数1.回归问题损失函数1.1 均方误差—MSE(L2损失)1.2 均方根误差—RMSE1.3 平均绝对值误差—MAE(L1损失)1.4 Huber损失函数—平滑的平均绝对误差1.5 Log-Cosh损失1.6 分位数损失函数2. 分类问题中的损失函数2.1 对数损失函数2.2 交叉熵损失函数二、凸优化1.什么是凸函数?2. 凸函数有什么性质?三、经典优化算法1.梯度下降法2.牛顿法3.随机梯度下降法—SGD引言 机器学习算法=模型表征+模型评估+优化算法,优化算法所做的事就是在模原创 2021-05-11 14:04:26 · 567 阅读 · 0 评论 -
百面机器学习—11.集成学习(GBDT、XGBoost)面试问题总结
文章目录1. 大小为N的样本集进行有放回抽样,样本N次有重复抽取被选中的概率是多少?2.集成学习分为哪几种?它们有何异同?3. 为什么很多集成学习模型都选择决策树作为基分类器?4.什么是偏差与方差?如何从减小方差和偏差的角度解释Boosting和Bagging的原理?4.1 什么是偏差与方差?4.2 如何从减小方差和偏差的角度解释Boosting和Bagging的原理?5.梯度提升树GBDT的基本原理是什么?5.1 为什么可以使用梯度近似代替残差?5.2 二分类问题的GBDT算法5.3 多分类问题的GBDT原创 2021-05-10 20:21:13 · 2085 阅读 · 4 评论 -
百面机器学习—模型复杂度与模型的方差、偏差的关系
文章目录 如果模型的复杂度过低,虽然方差很小,但是偏差会很高;会造成模型欠拟合。 如果模型复杂度过高,虽然偏差很小,但是方差会很高;造成模型过拟合。 如果模型复杂度合适,偏差与方差都很小。所以我们要综合考虑偏差与方差选择合适复杂度的模型进行训练。 下面展示模型复杂度、偏差、方差和泛化误差的关系,发现只有选择合适的模型复杂度,才能使方差与偏差变小,模型的泛化性能最好。如果对您有帮助,麻烦点赞关注,这真的对我很重要!!!如果需要互关,请评论或者私信!...原创 2021-05-09 19:24:42 · 1810 阅读 · 0 评论 -
百面机器学习—10.循环神经网络面试问题总结
文章目录1.传统方法、卷积神经网络、循环神经网络是如何进行文本分类任务的?2.为什么RNN会出现梯度消失或梯度爆炸,有哪些改进方案?2.1 为什么RNN会出现梯度消失或梯度爆炸?循环神经网络理论及实战传送门:深度学习TF—9.循环神经网络RNN及其变体GRU、LSTM深度学习TF—10.循环神经网络RNN及其变体LSTM、GRU实战1.传统方法、卷积神经网络、循环神经网络是如何进行文本分类任务的?传统方法用传统方法进行文本分类任务时,通常将一篇文章对应的TF-IDF向量作为特征输入,其中原创 2021-05-09 14:58:40 · 726 阅读 · 2 评论 -
百面机器学习—9.前馈神经网络面试问题总结
文章目录1.画出在二元输入的情况下,表示异或逻辑的网络图2.写出Sigmoid,tanh,reluSigmoid,tanh,reluSigmoid,tanh,relu的激活函数及对应导数3.为什么Sigmoid和tanhSigmoid和tanhSigmoid和tanh函数会导致梯度消失?4.ReLUReLUReLU系列的激活函数相对于Sigmoid和TanhSigmoid和TanhSigmoid和Tanh函数的优点是什么,有什么局限性?如何改进?5. 为什么引入非线性激励函数?6.如何选择合适的激活函数?6原创 2021-05-08 22:49:09 · 1300 阅读 · 24 评论 -
百面机器学习—8.概率图模型之HMM模型
文章目录一、一些概念1.什么是概率模型?2.什么是概率图模型?3.生成模型与判别模型的区别4.常见的概率图模型中哪些是生成模型,哪些是判别模型?二、HMM—隐马尔可夫模型1.什么是马尔科夫链?2.什么是隐马尔可夫模型?3.HMM的两个基本假设4.确定HMM的两组空间与三个参数一、一些概念1.什么是概率模型? 概率模型,顾名思义,就是将学习任务切结于计算变量的概率分布的模型。在生活中,我们经常会根据一些已经观察到的现象来推测和估计未知的东西——这种需求,恰恰是概率模型的推断《lnference)行为所原创 2021-05-07 21:53:52 · 450 阅读 · 0 评论 -
百面机器学习—7.K均值算法、EM算法与高斯混合模型要点总结
文章目录一、总结K均值算法步骤二、如何合理选择K值?三、K均值算法的优缺点是什么?四、如何对K均值算法进行调优?五、EM算法解决什么问题?六、EM算法流程是什么?六、EM算法能保证收敛嘛?如果收敛能收敛到全局最大值嘛?七、EM为什么不用牛顿法或者梯度下降?八、高斯混合模型GMM的核心思想是什么?九、高斯混合模型是如何迭代计算的?十、高斯混合模型与K均值算法比较十一、如何快速收敛数据量大的k-means算法?一、总结K均值算法步骤二、如何合理选择K值?手肘法我们可以尝试不同的K值,并将不同K值所对原创 2021-04-23 14:30:46 · 1113 阅读 · 0 评论 -
百面机器学习—6.PCA与LDA要点总结
文章目录一、分析PCA与LDA的各自特点1.从求解方法来看2. 从目标来看3. 从结果来看4. 从应用角度来看二、分析PCA降维的一些优缺点一、分析PCA与LDA的各自特点1.从求解方法来看PCA求解方法:LDA求解方法:从PCA和LDA两种降维方法的求解过程来看,它们确实有着很大的相似性,但对应的原理却有所区别。2. 从目标来看 PCA选择的是投影后数据方差最大的方向。由于它是无监督的,因此PCA假设方差越大,信息量越多,用主成分来表示原始数据可以去除冗余的维度,达到降维。而LDA选择原创 2021-04-22 13:09:18 · 709 阅读 · 0 评论 -
百面机器学习—5.SVM要点总结
文章目录1.硬间隔SVM公式推导1.硬间隔SVM公式推导原创 2021-04-21 13:45:10 · 650 阅读 · 0 评论 -
百面机器学习—4.SVM模型基础知识
文章目录引言一、间隔与支持向量1.什么是线性可分?2.什么是超平面?什么是最大间隔超平面?3.什么是支撑向量?4.SVM最优化问题二、对偶问题1.约束条件下的目标函数如何求解最优化问题?2. 怎么理解对偶问题?3.什么是对偶问题?4.KKT约束条件5.求解硬间隔SVM最优化问题推导三、软间隔1.软间隔的提出是解决什么问题的?2.软间隔后线性SVM的最优化问题是什么?3.求解软间隔SVM最优化问题推导四、核函数1.线性不可分问题怎么解决?2.什么是非线性SVM?3.为什么要有核函数?4. 有了核函数,如何求解原创 2021-04-21 11:17:17 · 938 阅读 · 0 评论 -
百面机器学习—3.逻辑回归与决策树要点总结
文章目录一、逻辑回归1.逻辑回归公式推导2.逻辑回归优缺点是什么?3.为什么逻辑回归需要归一化?4.对于逻辑回归,连续特征离散化的作用是什么?5.逻辑回归能否解决非线性的分类问题?二、决策树1.决策树的算法(ID3,C4.5,CART)总结1.1 ID3—信息增益1.2 C4.5—信息增益比1.3 CART—基尼指数1.4 三种算法对比2.为什么决策树需要剪枝?如何进行剪枝?3.为什么信息增益比比信息增益更佳?4.决策树的优缺点是什么?一、逻辑回归1.逻辑回归公式推导可以从下面四个方面展开:伯努利过程原创 2021-04-14 23:40:21 · 1510 阅读 · 4 评论 -
百面机器学习—2. 特征工程与模型评估要点总结
文章目录一、 特征归一化与标准化问题1. 什么是归一化?2. 有哪些归一化方法?3. 为什么要对数值类型特征做归一化?4. 标准化与归一化的区别二、 组合特征的相关问题1. 什么是组合特征?2. 怎么处理高维组合特征?3. 怎样有效的找到组合特征?三、如何处理类别型特征?四、文本处理部分问题1.什么是词袋模型?2.TF-IDF怎么计算的?3. 主题模型4. 什么是词嵌入模型?5. 如何理解word2vec?五、总结分类问题和回归问题评价指标六、ROC与AUC1.什么是ROC?如何绘制ROC?2. 如何计算A原创 2021-04-14 21:28:30 · 820 阅读 · 1 评论 -
百面机器学习—1.特征工程
文章目录一、特征归一化二、类别型特征三、高维组合特征的处理一、特征归一化描述 为了消除数据特征之间的量纲影响,我们需要对特征进行归一化,使得不同指标之间具有可比性,使得各指标处于同一数值量级,以便于分析。方法:线性函数归一化(Min-Max),将原始数据映射到[0,1]范围内from sklearn.preprocessing import MinMaxScaler零均值归一化(标准化),将原始数据映射到mean=0,std=1的分布上from sklearn.preproces原创 2021-03-05 15:19:42 · 1987 阅读 · 0 评论