大数定律与中心极限定理

15 篇文章 1 订阅

大数定律与中心极限定理


1 切比雪夫不等式

1.1 正态分布情形

假设 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2), μ = E X \mu=EX μ=EX表示随机变量 X X X的期望,则随机变量 X X X偏离其期望的概率为
P ( ∣ X − μ ∣ < k σ ) P(|X-\mu|< k \sigma) P(Xμ<)
🌲当 k = 1 k=1 k=1,随机变量 X X X偏离 μ \mu μ的距离不超过一单位标准差的概率为

P ( ∣ X − μ ∣ < σ ) = 2 Φ ( 1 ) − 1 = 0.683 P(|X-\mu|< \sigma)=2 \Phi(1)-1 =0.683 P(Xμ<σ)=(1)1=0.683
🌳当 k = 2 k=2 k=2,随机变量 X X X偏离 μ \mu μ的距离不超过两单位标准差的概率为
P ( ∣ X − μ ∣ < 2 σ ) = 2 Φ ( 2 ) − 1 = 0.955 P(|X-\mu|< 2\sigma)=2 \Phi(2)-1 =0.955 P(Xμ<2σ)=(2)1=0.955
🎄当 k = 3 k=3 k=3,随机变量 X X X偏离 μ \mu μ的距离不超过三单位标准差的概率为
P ( ∣ X − μ ∣ < 3 σ ) = 2 Φ ( 3 ) − 1 = 0.977 P(|X-\mu|< 3\sigma)=2 \Phi(3)-1 =0.977 P(Xμ<3σ)=(3)1=0.977
对于正态随机变量,其对期望的偏离不超过3倍标准差的概率达到97.7%,可以认为绝大部分随机变量的值域 Ω X \Omega_X ΩX落在区间 [ − 3 σ , 3 σ ] [-3\sigma,3\sigma] [3σ,3σ],这一结论称为 3 σ 3\sigma 3σ准则。对于正态分布可以精确计算出随机变量偏离期望的概率,那么任意分布的随机变量与期望的偏离概率如何计算呢?


1.2 任意分布情形

设任意分布的随机变量 X X X, E X = μ EX=\mu EX=μ, D X = σ 2 DX=\sigma^2 DX=σ2,对于 ∀ ε > 0 \forall \varepsilon>0 ε>0,均有不等式
P ( ∣ X − μ ∣ ⩾ ε ) ⩽ σ 2 ε 2 . P(|X-\mu| \geqslant \varepsilon) \leqslant \frac{\sigma^2}{\varepsilon^2} . P(Xμε)ε2σ2.
恒成立。根据对立事件性质得
P ( ∣ X − μ ∣ < ε ) ⩾ 1 − σ 2 ε 2 . P(|X-\mu|<\varepsilon) \geqslant 1-\frac{\sigma^2}{\varepsilon^2} . P(Xμ<ε)1ε2σ2.
切比雪夫不等式表明任意随机变量 X X X与期望的偏离小于任意的 ε > 0 \varepsilon>0 ε>0的概率不小于 1 − σ 2 / ε 2 1-\sigma^2/\varepsilon^2 1σ2/ε2。这一公式在理论研究有用,但实际计算中,概率范围的估计粗糙。例如取 ε = σ \varepsilon=\sigma ε=σ,则
P ( ∣ X − μ ∣ < σ ) ⩾ 0 P(|X-\mu|<\sigma) \geqslant 0 P(Xμ<σ)0
根据概率公理化定义,这是显然的事实,难以精确计算出随机变量与期望偏离小于单位 σ \sigma σ的概率。


2 大数定律

2.1 依概率收敛

X 1 、 X 2 … X_1、X_2\dots X1X2为随机变量序列,存在常数 c c c,对于 ∀ ε > 0 \forall \varepsilon>0 ε>0,总有
lim ⁡ n → ∞ P ( ∣ X n − c ∣ < ε ) = 1 \lim _{n \rightarrow \infty} P\left(\left|X_n-c\right|<\varepsilon\right)=1 nlimP(Xnc<ε)=1
则随机变量序列 X 1 、 X 2 … X_1、X_2\dots X1X2依概率收敛于 c c c,记作 X n ⟶ P c X_n \stackrel{P}{\longrightarrow} c XnPc。与数列极限不同,这里随着 n n n次试验的重复而不同。根据对立事件公式
lim ⁡ n → ∞ P ( ∣ X n − c ∣ ⩾ ε ) = 0 \lim _{n \rightarrow \infty} P\left(\left|X_n-c\right| \geqslant \varepsilon\right)=0 nlimP(Xncε)=0

2.2 频率与概率

n n n重伯努利试验中,事件 A A A发生 N A N_A NA次,其中 N A ∼ B ( n , p ) N_A\sim B(n,p) NAB(n,p), p = P ( A ) p=P(A) p=P(A),频率 f n = N A / n f_n = N_A/n fn=NA/n。有时我们会用频率作为事件发生的概率(在大量重复试验下),考虑 ∀ ε > 0 \forall \varepsilon>0 ε>0,根据切比雪夫不等式有
P ( ∣ f n − p ∣ ⩾ ε ) ⩽ 1 ε 2 D ( f n ) = p ( 1 − p ) n ε 2 ⟶ 0. P\left(\left|f_n-p\right| \geqslant \varepsilon\right) \leqslant \frac{1}{\varepsilon^2} D(f_n)=\frac{p(1-p)}{n \varepsilon^2} \longrightarrow 0 . P(fnpε)ε21D(fn)=nε2p(1p)0.
其中 E ( f n ) = 1 n E ( N A ) = p E(f_n) = \dfrac{1}{n}E(N_A)=p E(fn)=n1E(NA)=p D ( f n ) = 1 n 2 D ( N A ) = p ( 1 − p ) D(f_n)=\dfrac{1}{n^2}D(N_A)=p(1-p) D(fn)=n21D(NA)=p(1p)。因此在大量重复试验下 n → ∞ n\to \infty n时,事件A的频率依概率收敛对应的概率 N A n ⟶ P p \dfrac{N_A}{n} \stackrel{P}{\longrightarrow} p nNAPp


2.2 切比雪夫大数定律

X 1 , X 2 … X_1,X_2\dots X1,X2是两两独立的随机序列, D X i ( i = 1 , 2 …   ) DX_i(i=1,2\dots ) DXi(i=1,2)有界,则
1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) = ∑ i = 1 n [ X i − E ( X i ) ] n ⟶ P 0. \frac{1}{n} \sum_{i=1}^n X_i-\frac{1}{n} \sum_{i=1}^n E\left(X_i\right) =\frac{\sum_{i=1}^n [X_i-E\left(X_i\right)]}{n} \stackrel{P}{\longrightarrow} 0 . n1i=1nXin1i=1nE(Xi)=ni=1n[XiE(Xi)]P0.
E X i = μ EX_i=\mu EXi=μ,即所有随机序列的期望均相等,则有
X ˉ = 1 n ∑ i = 1 n X i ⟶ P μ . \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\longrightarrow} \mu . Xˉ=n1i=1nXiPμ.
事实上,方差不存在依然成立。

N <- 100000
n <- 20000
df <- 2
set.seed(2)
Z <- rchisq(N, df)
x <- numeric()
for (i in 1:n) {
  set.seed(i)
  x[i] <- sample(Z, 1)
  mean_X <- mean(x)
  # 总体期望mu = df 
  cat("n=", i, "依概率收敛:", "mean_X-df--->", mean_X - df, "\n")
}


2.3 辛钦大数定律

X 1 , X 2 … X_1,X_2\dots X1,X2服从独立同分布 i i d iid iid的随机变量序列,且 E X i = μ EX_i=\mu EXi=μ, D ( X i ) = σ 2 D(X_i)=\sigma^2 D(Xi)=σ2,则
X ˉ = 1 n ∑ i = 1 n X i ⟶ P μ . \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\longrightarrow} \mu . Xˉ=n1i=1nXiPμ.
X 1 , X 2 … X_1,X_2\dots X1,X2 i i d iid iid E X i = μ EX_i=\mu EXi=μ D ( X i ) = σ 2 D(X_i)=\sigma^2 D(Xi)=σ2
1 n ∑ i = 1 n X i 2 ⟶ P 1 n ∑ i = 1 n E ( X i 2 ) = σ 2 + μ 2 \frac{1}{n} \sum_{i=1}^n X_i^2 \stackrel{P}{\longrightarrow} \frac{1}{n} \sum_{i=1}^n E\left(X_i^2\right)=\sigma^2+\mu^2 n1i=1nXi2Pn1i=1nE(Xi2)=σ2+μ2
其中 E ( X i 2 ) = D ( X i ) + ( E X i ) 2 = σ 2 + μ 2 E(X_i^2) = D(X_i)+(EX_i)^2=\sigma^2+\mu^2 E(Xi2)=D(Xi)+(EXi)2=σ2+μ2

rm(list=ls())
N <- 100000
n <- 100000
df <- 8
Z <- rt(N,df)
x <- numeric()

for (i in 1:n) {
  set.seed(i)
  x[i] <- sample(Z, 1)^2
  mean_X2 <- mean(x)
  cat("n=", i, "mean_X2-(mu^2+sigma^2)依概率收敛", "--->", mean_X2-df/(df-2), "\n")
}

2.4 伯努利大数定律

X 1 , X 2 … X_1,X_2\dots X1,X2是iid随机序列,且 X i ∼ B ( 1 , p ) X_i\sim B(1,p) XiB(1,p),则
X ˉ = 1 n ∑ i = 1 n X i ⟶ P p . \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\longrightarrow} p . Xˉ=n1i=1nXiPp.
基于辛钦大数定律,这里随机变量期望 E X i = p EX_i=p EXi=p

N <- 100000
n <- 100000
df <- 8
set.seed(100)
p <- 0.5
Z <- rbinom(N, 1, p)
x <- numeric()

for (i in 1:n) {
  set.seed(i)
  x[i] <- sample(Z, 1)
  mean_X <- mean(x)
  cat("n=", i, "mean_X-p 依概率收敛", "--->", mean_X - p, "\n")
}

3 中心极限定理

后续均假设随机变量序列 X 1 , X 2 ⋯ ∼ i i d X_1,X_2\dots\sim iid X1,X2iid E X i = μ i EX_i=\mu_i EXi=μi, D X i = σ 2 DX_i=\sigma^2 DXi=σ2 i = 1 , 2 … n i=1,2\dots n i=1,2n

👉当随机变量序列 X i ∼ N ( μ i , σ 2 ) X_i\sim N(\mu_i,\sigma^2) XiN(μi,σ2),则根据正态分布的可加性得 ∑ i n X i ∼ N ( n μ , n σ 2 ) \sum_i^nX_i\sim N(n\mu,n\sigma^2) inXiN(nμ,nσ2),对于任意 ∀ ε > 0 \forall \varepsilon>0 ε>0,则随机变量 ∑ i n X i \sum_i^nX_i inXi偏离其均值的距离小于 ε \varepsilon ε的概率为
P ( ∣ ∑ i n X i − n μ ∣ ≤ ε ) = P ( ∣ ∑ i n X i − n μ n σ ∣ ≤ ε n σ ) = Φ ( ε n σ ) − Φ ( − ε n σ ) = 1 − 2 Φ ( ε n σ ) \begin{aligned} P(|\sum_i^nX_i-n\mu| \le \varepsilon)&=P\left(\left| \dfrac{\sum_i^nX_i-n\mu}{\sqrt{n}\sigma}\right | \le \dfrac{\varepsilon}{\sqrt{n}\sigma} \right) \\ &=\Phi(\dfrac{\varepsilon}{\sqrt{n}\sigma})-\Phi(-\dfrac{\varepsilon}{\sqrt{n}\sigma})\\ &=1-2\Phi(\dfrac{\varepsilon}{\sqrt{n}\sigma}) \end{aligned} P(inXinμε)=P( n σinXinμ n σε)=Φ(n σε)Φ(n σε)=1(n σε)
👉当随机变量序列 X i X_i Xi不服从正态分布时,只要 n n n足够大,则 ∑ i n X i \sum_i^nX_i inXi也近似服从正态分布,关于这一结论称为中心极限定理


3.1 列维-林德伯格(Levy-lindberg)中心极限定理

随机变量序列 X 1 , X 2 ⋯ ∼ i i d X_1,X_2\dots\sim iid X1,X2iid,且
E ( X i ) = μ , D ( X i ) = σ 2 > 0 , i = 1 , 2 , ⋯   , E\left(X_i\right)=\mu, \quad D\left(X_i\right)=\sigma^2>0, \quad i=1,2, \cdots, E(Xi)=μ,D(Xi)=σ2>0,i=1,2,,
对于任意 x ∈ R x\in R xR,有
lim ⁡ n → ∞ P ( ∑ i = 1 n X i − n μ n σ ⩽ x ) = Φ ( x ) , \lim _{n \rightarrow \infty} P\left(\frac{\sum_{i=1}^n X_i-n \mu}{\sqrt{n} \sigma} \leqslant x\right)=\Phi(x), nlimP(n σi=1nXinμx)=Φ(x),
其中 Φ ( x ) \Phi(x) Φ(x) N ( 0 , 1 ) N(0,1) N(0,1)的分布函数。这一定理意味着无论 X 1 , X 2 ⋯ ∼ i i d X_1,X_2\dots\sim iid X1,X2iid属于什么分布,只要 n → ∞ n\to \infty n
∑ i = 1 n X i − n μ n σ ∼ N ( 0 , 1 ) ; ∑ i = 1 n X i ∼ N ( n μ , n σ 2 ) \frac{\sum_{i=1}^n X_i-n \mu}{\sqrt{n} \sigma}\sim N(0,1);\sum_{i=1}^n X_i\sim N(n \mu,n\sigma^2) n σi=1nXinμN(0,1);i=1nXiN(nμ,nσ2)
或者
∑ i = 1 n X i − n μ n σ = n ( 1 n ∑ i = 1 n X i − μ ) n σ = n ( X ˉ − μ ) σ = ( X ˉ − μ ) σ / n ∼ N ( 0 , 1 ) \begin{aligned} \dfrac{\sum_{i=1}^n X_i-n \mu}{\sqrt{n} \sigma}&=\dfrac{n(\dfrac{1}{n}\sum_{i=1}^n X_i-\mu)}{\sqrt{n} \sigma}\\ \\ &=\sqrt{n}\dfrac{(\bar{X}-\mu)}{\sigma}\\ \\ &=\dfrac{(\bar{X}-\mu)}{\sigma/\sqrt{n}}\sim N(0,1) \end{aligned} n σi=1nXinμ=n σn(n1i=1nXiμ)=n σ(Xˉμ)=σ/n (Xˉμ)N(0,1)
因此,当 n → ∞ n\to \infty n时, X ˉ = ∑ i n X n ∼ N ( μ , σ 2 / n ) \bar{X}=\frac{\sum_i^nX}{n}\sim N(\mu,\sigma^2/n) Xˉ=ninXN(μ,σ2/n)


3.2 德莫弗 -拉普拉斯(De Moivre-Laplace)中心极限定理

该定理是Levy-lindberg中心极限定理特列,假设随机变量服从伯努利分布,并应用Levy-lindberg中心极限定理。

随机变量序列 X 1 , X 2 ⋯ ∼ i i d X_1,X_2\dots\sim iid X1,X2iid,且 X i ∼ B ( 1 , p ) X_i\sim B(1,p) XiB(1,p),则 x ∈ R x\in R xR
lim ⁡ n → ∞ P ( ∑ i = 1 n X i − n p n p ( 1 − p ) ⩽ x ) = Φ ( x ) . \lim _{n \rightarrow \infty} P\left(\frac{\sum_{i=1}^n X_i-n p}{\sqrt{n p(1-p)}} \leqslant x\right)=\Phi(x) . nlimP(np(1p) i=1nXinpx)=Φ(x).
n → ∞ n\to \infty n时, X ˉ = ∑ i n X n ∼ N ( p , p ( 1 − p ) / n ) \bar{X}=\frac{\sum_i^nX}{n}\sim N(p,p(1-p)/n) Xˉ=ninXN(p,p(1p)/n)。事实上,二项分布具有可加性 ∑ i = 1 n X i ∼ B ( n , p ) \sum_{i=1}^n X_i \sim B(n, p) i=1nXiB(n,p),期望为 n p np np,方差 n p ( 1 − p ) np(1-p) np(1p)

参考书籍:《概率论与数理统计》,上海:同济大学出版社,2015


-END-
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值