随机过程入门基础

文章介绍了随机过程的基础知识,包括概率的基本概念如样本空间、概率、概率空间,以及随机变量的一维和多维情况。接着讨论了随机过程的定义,随机变量的期望计算方法,卷积公式以及概率母函数和矩母函数的概念,最后提到了特征函数在处理概率密度函数中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机过程入门基础

1 基本概念

试验的特性

  • 相同条件下重复进行
  • 结果不止一个,事先知道所有样本结果
  • 每次试验不知道出现哪个结果

样本空间:试验所有可能出现的结果,记作 Ω \Omega Ω

Ω \Omega Ω中的元素 e e e成为样本点或基本事件, Ω \Omega Ω的子集 A A A称为事件, Ω \Omega Ω为必然事件,空集 ∅ \empty 为不可能事件。如果 A A A Ω \Omega Ω的子集,则

  • Ω \Omega Ω为事件,
  • A A A为事件,则 A c A^c Ac也为事件
  • A i ( i = 1 , 2 , …   ) A_i(i=1,2,\dots) Ai(i=1,2,)为事件,则 ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}{A_i} i=1Ai为事件

概率:用符号 P ( A ) \mathbb{P}(A) P(A)表示事件 A A A的概率,如果满足

  • 非负性 P ( A ) ≥ 0 \mathbb{P}(A)\ge0 P(A)0
  • 完备性 P ( Ω ) = 1 \mathbb{P}(\Omega)=1 P(Ω)=1
  • 可加可列性

P ( ⋃ i = 1 ∞ A i ) = ∑ i ∞ P ( A ) \mathbb{P}(\bigcup_{i=1}^{\infty}{A_i})=\sum_i^{\infty}\mathbb{P}(A) P(i=1Ai)=iP(A)

概率空间:设样本空间 Ω \Omega Ω,概率 P \mathbb{P} P σ \sigma σ代数域 F \mathscr{F} F,其三位一体 ( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)称为概率空间。

其中 F \mathscr{F} F表示全体事件,满足(交并补集在 σ \sigma σ代数域满足封闭性)

  • A i ∈ F A_i\in \mathscr{F} AiF,则 A c ∈ F A^c \in \mathscr{F} AcF
  • A i , A j ∈ F , ∀ i , j A_i,A_j \in \mathscr{F},\forall i,j Ai,AjF,i,j,则 A i ∩ A j ∈ F A_i \cap A_j \in \mathscr{F} AiAjF
  • A i , A j ∈ F , ∀ i , j A_i,A_j \in \mathscr{F},\forall i,j Ai,AjF,i,j,则 A i ∪ A j ∈ F A_i \cup A_j \in \mathscr{F} AiAjF

其中 P \mathbb{P} P表示事件的概率,满足

  • P ( ∅ ) = 0 \mathbb{P}(\empty)=0 P()=0
  • A i ( i = 1 , 2 …   ) A_i(i=1,2\dots) Ai(i=1,2)两两互不相容时,下列等号成立

P ( ⋃ i = 1 n A i ) ≤ ∑ i n P ( A ) \mathbb{P}(\bigcup_{i=1}^{n}{A_i})\le\sum_i^{n}\mathbb{P}(A) P(i=1nAi)inP(A)

  • B ⊂ A B\subset A BA,则 P ( A ) − P ( B ) = P ( A − B ) ≥ 0 \mathbb{P}(A)-\mathbb{P}(B) =\mathbb{P}(A-B) \ge0 P(A)P(B)=P(AB)0
  • P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) \mathbb{P}(A\cup B) = \mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B) P(AB)=P(A)+P(B)P(AB)
  • P ( A ) > 0 \mathbb{P}(A)>0 P(A)>0,则

P ( B ∣ A ) = P ( A B ) P ( A ) \mathbb{P}(B|A)=\frac{\mathbb{P}(AB)}{\mathbb{P}(A)} P(BA)=P(A)P(AB)

乘法公式
P ( B 1 B 2 … B n ) = P ( B 1 ) P ( B 2 ∣ B 1 ) … P ( B n ∣ B n − 1 … B 1 ) \mathbb{P}(B_1B_2\dots B_n)=\mathbb{P}(B_1)\mathbb{P}(B_2|B_1)\dots \mathbb{P}(B_n|B_{n-1}\dots B_1) P(B1B2Bn)=P(B1)P(B2B1)P(BnBn1B1)
P ( A ) ≥ 0 \mathbb{P}(A)\ge 0 P(A)0时,条件概率
P ( B 1 B 2 … B n ∣ A ) = P ( B 1 ∣ A ) P ( B 2 ∣ B 1 A ) … P ( B n ∣ B n − 1 … B 1 A ) \mathbb{P}(B_1B_2\dots B_n|A)=\mathbb{P}(B_1|A)\mathbb{P}(B_2|B_1A)\dots \mathbb{P}(B_n|B_{n-1}\dots B_1A) P(B1B2BnA)=P(B1A)P(B2B1A)P(BnBn1B1A)
全概率公式

A i ( i = 1 , 2 …   ) A_i(i=1,2\dots) Ai(i=1,2)互不相容,当 B ⊂ ⋃ i = 1 ∞ A i B \subset \bigcup_{i=1}^{\infty}{A_i} Bi=1Ai ⋃ i = 1 ∞ A i = Ω \bigcup_{i=1}^{\infty}{A_i} = \Omega i=1Ai=Ω
P ( B ) = ∑ i = 1 ∞ P ( B A i ) = ∑ i = 1 ∞ P ( B ∣ A i ) P ( A i ) \mathbb{P}(B) = \sum_{i=1}^{\infty}\mathbb{P}(BA_i)=\sum_{i=1}^{\infty}\mathbb{P}(B|A_i)\mathbb{P}(A_i) P(B)=i=1P(BAi)=i=1P(BAi)P(Ai)
P ( A ) ≥ 0 \mathbb{P}(A)\ge 0 P(A)0时,条件概率
P ( B ) = ∑ i = 1 ∞ P ( B A i ∣ A ) = ∑ i = 1 ∞ P ( B ∣ A i A ) P ( A i A ) \mathbb{P}(B) = \sum_{i=1}^{\infty}\mathbb{P}(BA_i|A)=\sum_{i=1}^{\infty}\mathbb{P}(B|A_iA)\mathbb{P}(A_iA) P(B)=i=1P(BAiA)=i=1P(BAiA)P(AiA)
贝叶斯公式
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) \mathbb{P}(A|B)=\frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)} P(AB)=P(B)P(BA)P(A)
A i ( i = 1 , 2 …   ) A_i(i=1,2\dots) Ai(i=1,2)互不相容,当 B ⊂ ⋃ i = 1 ∞ A i B \subset \bigcup_{i=1}^{\infty}{A_i} Bi=1Ai ⋃ i = 1 ∞ A i = Ω \bigcup_{i=1}^{\infty}{A_i} = \Omega i=1Ai=Ω
P ( A i ∣ B ) = P ( B ∣ A i ) P ( A i ) ∑ k = 1 ∞ P ( B ∣ A k ) P ( A k ) \mathbb{P}(A_i|B)=\frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{k=1}^{\infty}\mathbb{P}(B|A_k)\mathbb{P}(A_k)} P(AiB)=k=1P(BAk)P(Ak)P(BAi)P(Ai)
概率连续性
{ P ( ⋃ i = 1 n A i ) = lim ⁡ n → ∞ P ( A n ) A 1 ⊂ A 2 ⊂ … P ( ⋂ i = 1 n B i ) = lim ⁡ n → ∞ P ( B n ) B 1 ⊃ B 2 ⊃ … \left\{\begin{array}{l} \mathbb{P}(\bigcup_{i=1}^{n}{A_i}) = \mathop {\lim }\limits_{{\text{n}} \to \infty } \mathbb{P}(A_n) & A_1 \subset A_2 \subset \dots \\ \\ \mathbb{P}(\bigcap_{i=1}^{n}{B_i}) = \mathop {\lim }\limits_{{\text{n}} \to \infty } \mathbb{P}(B_n) & B_1 \supset B_2 \supset \dots \end{array}\right. P(i=1nAi)=nlimP(An)P(i=1nBi)=nlimP(Bn)A1A2B1B2


2 随机变量

2.1 一维情形

随机变量是定义在样本空间 Ω \Omega Ω上的函数
F X ( t ) = P ( X ≤ t ) F_X(t)=\mathbb{P}(X\le t) FX(t)=P(Xt)
X X X分布函数,且单调不减右连续,对于连续型随机变量,
F X ( t ) = P ( X ≤ t ) = ∫ − ∞ t f ( s ) d s F_X(t)=\mathbb{P}(X\le t) = \int_{-\infty}^tf(s)ds FX(t)=P(Xt)=tf(s)ds
其中 f ( s ) f(s) f(s)为随机变量 X X X的概率密度函数,设 x ∈ A x \in A xA,则
P ( X ∈ A ) = ∫ A f ( s ) d s \mathbb{P}(X\in A) = \int_A f(s)ds P(XA)=Af(s)ds

2.2 多维情形

x i ( i = 1 , … n ) x_i(i=1,\dots n) xi(i=1,n)为随机变量,则 X = ( x 1 , x 2 , … x n ) X = (x_1,x_2,\dots x_n) X=(x1,x2,xn)称为随机向量。定义在函数 R n R^n Rn上的 n n n元函数
F X ( x 1 , x 2 , … x n ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 … X n ≤ x n ) F_X(x_1,x_2,\dots x_n)=\mathbb{P}(X_1\le x_1,X_2\le x_2\dots X_n\le x_n) FX(x1,x2,xn)=P(X1x1,X2x2Xnxn)
称为随机向量 X = ( x 1 , x 2 , … x n ) X = (x_1,x_2,\dots x_n) X=(x1,x2,xn)上的分布函数。对于连续型随机向量 X X X,
P ( X ∈ D ) = ∫ D f ( X ) d x 1 d x 2 … d x n \mathbb{P}(X\in D) =\int_Df(X)dx_1dx_2\dots dx_n P(XD)=Df(X)dx1dx2dxn
其中 f ( X ) = f ( x 1 , x 2 , … x n ) f(X) = f(x_1,x_2,\dots x_n) f(X)=f(x1,x2,xn)是随机向量 X X X的联合概率密度函数, D D D为定义在 R n R^n Rn上的区域


2 随机过程

2.1 随机过程定义

( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)为概率空间, T T T为参数集,对于 ∀ t ∈ T \forall t \in T tT,均有定义在概率空间上的一个随机变量 X t ( ω ) , ω ∈ Ω X_t(\omega),\omega\in \Omega Xt(ω),ωΩ与之相对应,则称 { X t : t ∈ T } \{X_t:t\in T\} {Xt:tT}为概率空间 ( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)上的随机过程。

t t t一般指事件,参数集 T T T为事件参数; X t X_t Xt视为过程在时刻 t t t的状态, X t X_t Xt的取值范围为状态空间 S S S

对于随机过程 X t ( ω ) X_t(\omega) Xt(ω)包括时间与状态两个维度

  • 当固定状态 ω \omega ω时, X t X_t Xt称为样本函数或轨迹,或随机过程的一次实现
  • 当固定事件 t t t时, X ( ω ) X(\omega) X(ω)称为一个随机变量

所有样本函数与随机变量的集合称为随机过程,即随机过程是所有随机样本函数的集合

2.2 随机变量期望

离散型

X X X的离散概率分布如下:
p i = P ( X = x i ) , i = 1 , 2 … p_i = \mathbb{P}(X=x_i),i=1,2\dots pi=P(X=xi),i=1,2

E X = ∑ i = 1 ∞ x i p i ⟺ ∑ k = 1 ∞ P ( X ≥ k ) \mathbb{E} X=\sum_{i=1}^{\infty}x_ip_i \Longleftrightarrow \sum_{k=1}^{\infty}\mathbb{P}(X\ge k) EX=i=1xipik=1P(Xk)
proof

∑ k = 1 ∞ P ( X ≥ k ) = ∑ k = 1 ∞ ∑ i = k ∞ P ( X = i ) = ∑ i = 1 ∞ ∑ k = 1 i P ( X = i ) = ∑ i = 1 ∞ i P ( X = i ) = E X \begin{aligned} \sum_{k=1}^{\infty}\mathbb{P}(X\ge k)=&\sum_{k=1}^{\infty}\sum_{i=k}^{\infty}\mathbb{P}(X=i)\\ \\ =&\sum_{i=1}^{\infty}\sum_{k=1}^{i}\mathbb{P}(X=i)\\ \\ =&\sum_{i=1}^{\infty}i\mathbb{P}(X=i)=\mathbb{E}X \end{aligned} k=1P(Xk)===k=1i=kP(X=i)i=1k=1iP(X=i)i=1iP(X=i)=EX

二阶原点矩
E X 2 = ∑ i = 1 ∞ x i 2 p i \mathbb{E} X^2=\sum_{i=1}^{\infty}x_i^2p_i EX2=i=1xi2pi
连续型

X X X为密度函数 f ( x ) f(x) f(x)的随机变量,即
P ( X ≤ a ) = ∫ − ∞ a f ( x ) d x \mathbb{P}(X\le a) = \int_{-\infty}^af(x)dx P(Xa)=af(x)dx
期望为
E X = ∫ − ∞ ∞ x f ( x ) d x \mathbb{E}X = \int_{-\infty}^{\infty} xf(x)dx EX=xf(x)dx
二阶原点矩为
E X 2 = ∫ − ∞ ∞ x 2 f ( x ) d x \mathbb{E}X^2 = \int_{-\infty}^{\infty} x^2f(x)dx EX2=x2f(x)dx

2.3 卷积公式

离散型

设随机变量 X , Y X,Y X,Y相互独立,满足
P ( X = k ) = a k ; P ( Y = k ) = b k ; k = 0 , 1 … \mathbb{P}(X=k)=a_k;\mathbb{P}(Y=k)=b_k;k=0,1\dots P(X=k)=ak;P(Y=k)=bk;k=0,1
Z = X + Y = n ( n ≥ 0 ) Z = X+Y=n(n\ge 0) Z=X+Y=n(n0)的概率为
P ( Z = n ) = P ( X + Y = n ) = ∑ i = 0 n P ( X = i , Y = n − i ) = ∑ i = 0 n P ( X = i ) P ( Y = n − i ) = ∑ i = 0 n a i b n − i \begin{aligned} \mathbb{P}(Z=n)=&\mathbb{P}(X+Y=n)\\ \\ =&\sum_{i=0}^n \mathbb{P} (X=i,Y=n-i)\\ =&\sum_{i=0}^n\mathbb{P}(X=i) \mathbb{P}(Y=n-i)\\ =&\sum_{i=0}^na_ib_{n-i} \end{aligned} P(Z=n)====P(X+Y=n)i=0nP(X=i,Y=ni)i=0nP(X=i)P(Y=ni)i=0naibni
P ( Z = n ) = c n \mathbb{P}(Z=n)=c_n P(Z=n)=cn,则
c n = ∑ i = 0 n a i b n − i c_n =\sum_{i=0}^na_ib_{n-i} cn=i=0naibni
称序列 { c n } \{c_n\} {cn}卷积

连续型

X X X, Y Y Y独立,分布函数分别为 F ( X ) , F ( Y ) F(X),F(Y) F(X),F(Y),令 U = X + Y U = X+Y U=X+Y U U U的分布函数为
U ( t ) = P ( X + Y ≤ t ) = ∑ 0 ≤ s ≤ t P ( X + Y ≤ t ∣ Y = s ) P ( Y = s ) = ∫ 0 t P ( X ≤ t − s ) d G ( s ) = ∫ 0 t F ( t − s ) d G ( s ) \begin{aligned} U(t) = &\mathbb{P}(X+Y\le t)\\ \\ =&\sum_{0\le s \le t}\mathbb{P}(X+Y\le t|Y=s)\mathbb{P}(Y=s)\\ \\ =&\int_0^t\mathbb{P}(X\le t-s)dG(s)\\ \\ =&\int_0^tF(t-s)dG(s) \end{aligned} U(t)====P(X+Yt)0stP(X+YtY=s)P(Y=s)0tP(Xts)dG(s)0tF(ts)dG(s)
易得
U ( t ) = ∫ 0 t F ( t − s ) d G ( s ) = ∫ 0 t G ( t − s ) d F ( s ) U(t)=\int_0^tF(t-s)dG(s)=\int_0^tG(t-s)dF(s) U(t)=0tF(ts)dG(s)=0tG(ts)dF(s)
两个随机变量 X , Y X,Y X,Y独立,概率密度分别为 f ( x ) 、 g ( y ) f(x)、g(y) f(x)g(y),则 U = X + Y U=X+Y U=X+Y的概率密度为
u ( t ) = ∫ 0 t f ( t − s ) g ( s ) = ( f ∗ g ) ( s ) u ( t ) = ∫ 0 t g ( t − s ) f ( s ) = ( g ∗ f ) ( s ) \begin{aligned} u(t)=\int_0^tf(t-s)g(s)=(f*g)(s)\\ \\ u(t)=\int_0^tg(t-s)f(s)=(g*f)(s)\\ \end{aligned} u(t)=0tf(ts)g(s)=(fg)(s)u(t)=0tg(ts)f(s)=(gf)(s)
故交换律
( f ∗ g ) ( s ) = ( g ∗ f ) ( s ) (f*g)(s) = (g*f)(s) (fg)(s)=(gf)(s)
成立。


3 概率母函数

定义概率母函数(generating funtion)
G X ( s ) = E s x = ∑ k = 0 ∞ s k P ( x = k ) , s ∈ [ − 1 , 1 ] G_X(s)=\mathbb{E}s^x = \sum_{k=0}^{\infty}s^k\mathbb{P}(x=k),s\in[-1,1] GX(s)=Esx=k=0skP(x=k),s[1,1]
对于 G X ( s ) G_X(s) GX(s) s s s求一阶导
G X ′ ( s ) = E ( x s x − 1 ) = ∑ k = 0 ∞ k s k − 1 P ( x = k ) G_X'(s)=\mathbb{E}(xs^{x-1})=\sum_{k=0}^{\infty}ks^{k-1}\mathbb{P}(x=k) GX(s)=E(xsx1)=k=0ksk1P(x=k)
对于 G X ( s ) G_X(s) GX(s) s s s求二阶导
G X ′ ′ ( s ) = E ( x ( x − 1 ) s x − 2 ) = ∑ k = 0 ∞ k ( k − 1 ) s k − 2 P ( x = k ) G_X''(s)=\mathbb{E}(x(x-1)s^{x-2})=\sum_{k=0}^{\infty}k(k-1)s^{k-2}\mathbb{P}(x=k) GX′′(s)=E(x(x1)sx2)=k=0k(k1)sk2P(x=k)
s = 1 s=1 s=1,
G X ′ ( 1 ) = ∑ k = 0 ∞ k P ( x = k ) = E X G_X'(1)=\sum_{k=0}^{\infty}k\mathbb{P}(x=k)=\mathbb{E}X GX(1)=k=0kP(x=k)=EX

G X ′ ′ ( 1 ) = ∑ k = 0 ∞ k ( k − 1 ) P ( x = k ) = E X ( X − 1 ) = E X 2 − E X G_X''(1)=\sum_{k=0}^{\infty}k(k-1)\mathbb{P}(x=k)=\mathbb{E}X(X-1)=\mathbb{E}X^2-\mathbb{E}X GX′′(1)=k=0k(k1)P(x=k)=EX(X1)=EX2EX

于是得到

  • G X ′ ( 1 ) = E X G_X'(1)=\mathbb{E}X GX(1)=EX
  • E X 2 = G X ′ ′ ( 1 ) + G X ′ ( 1 ) \mathbb{E}X^2=G''_X(1)+G'_X(1) EX2=GX′′(1)+GX(1)
  • V a r ( X ) = E X 2 − ( E X ) 2 = G X ′ ′ ( 1 ) + G X ′ ( 1 ) − [ G X ′ ( 1 ) ] 2 Var(X) = \mathbb{E}X^2-(\mathbb{E}X)^2 = G''_X(1)+G'_X(1)-[G'_X(1)]^2 Var(X)=EX2(EX)2=GX′′(1)+GX(1)[GX(1)]2

4 矩母函数

设任意概率密度函数 f ( x ) f(x) f(x)的随机变量为 X X X,其矩母函数构造如下
M X ( t ) = E ( e t x ) = ∫ − ∞ ∞ e t x f ( x ) d x M_X(t)=\mathbb{E}(e^{tx})=\int_{-\infty}^{\infty}e^{tx}f(x)dx MX(t)=E(etx)=etxf(x)dx
根据级数相关知识
e x = ∑ k = 0 ∞ x k k ! e^x =\sum_{k=0}^{\infty}\frac{x^k}{k!} ex=k=0k!xk

M X ( t ) = ∫ − ∞ ∞ e t x f ( x ) d x = ∫ − ∞ ∞ ∑ k = 0 ∞ ( t x ) k k ! f ( x ) d x = ∑ k = 0 ∞ t k k ! ∫ − ∞ ∞ x k f ( x ) d x = ∑ k = 0 ∞ t k k ! E X k = 1 + t E X + t 2 2 ! E X 2 + ⋯ + t k k ! E X k + … \begin{aligned} M_X(t)=&\int_{-\infty}^{\infty}e^{tx}f(x)dx\\ \\ =&\int_{-\infty}^{\infty}\sum_{k=0}^{\infty}\frac{(tx)^k}{k!}f(x)dx\\ \\ =&\sum_{k=0}^{\infty}\frac{t^k}{k!}\int_{-\infty}^{\infty}x^kf(x)dx\\ \\ =&\sum_{k=0}^{\infty}\frac{t^k}{k!}\mathbb{E}X^k \\ =&1+t\mathbb{E}X+\frac{t^2}{2!}\mathbb{E}X^2+\dots+\frac{t^k}{k!}\mathbb{E}X^k+\dots \end{aligned} MX(t)=====etxf(x)dxk=0k!(tx)kf(x)dxk=0k!tkxkf(x)dxk=0k!tkEXk1+tEX+2!t2EX2++k!tkEXk+
因此,矩母函数包含了随机变量 X X X各阶中心矩 E X n ( n = 1 , 2 …   ) \mathbb{E}X^n(n=1,2\dots) EXn(n=1,2),矩母函数大大简化了求分布函数的矩的复杂性。对 M X ( t ) = ∫ − ∞ ∞ e t x f ( x ) d x M_X(t)=\int_{-\infty}^{\infty}e^{tx}f(x)dx MX(t)=etxf(x)dx关于 t t t求导,得
{ d M X ( t ) d t = ∫ − ∞ ∞ e t x x f ( x ) d x d M X 2 ( t ) d t 2 = ∫ − ∞ ∞ e t x x 2 f ( x ) d x ⋮ d M X n ( t ) d t n = ∫ − ∞ ∞ e t x x n f ( x ) d x \left\{\begin{array}{l} \frac{dM_X(t)}{dt}=\int_{-\infty}^{\infty}e^{tx}xf(x)dx\\ \\ \frac{dM^2_X(t)}{dt^2}=\int_{-\infty}^{\infty}e^{tx}x^2f(x)dx\\ \\ \vdots \\ \frac{dM^n_X(t)}{dt^n}=\int_{-\infty}^{\infty}e^{tx}x^nf(x)dx\\ \end{array}\right. dtdMX(t)=etxxf(x)dxdt2dMX2(t)=etxx2f(x)dxdtndMXn(t)=etxxnf(x)dx
t = 0 t=0 t=0
{ d M X ( t ) d t ∣ t = 0 = ∫ − ∞ ∞ x f ( x ) d x = E X d M X 2 ( t ) d t 2 ∣ t = 0 = ∫ − ∞ ∞ x 2 f ( x ) d x = E X 2 ⋮ d M X n ( t ) d t n ∣ t = 0 = ∫ − ∞ ∞ x n f ( x ) d x = E X n \left\{\begin{array}{l} \frac{dM_X(t)}{dt}|_{t=0}=\int_{-\infty}^{\infty}xf(x)dx = \mathbb{E}X\\ \\ \frac{dM^2_X(t)}{dt^2}|_{t=0}=\int_{-\infty}^{\infty}x^2f(x)dx=\mathbb{E}X^2\\ \\ \vdots \\ \frac{dM^n_X(t)}{dt^n}|_{t=0}=\int_{-\infty}^{\infty}x^nf(x)dx=\mathbb{E}X^n\\ \end{array}\right. dtdMX(t)t=0=xf(x)dx=EXdt2dMX2(t)t=0=x2f(x)dx=EX2dtndMXn(t)t=0=xnf(x)dx=EXn

5 特征函数

矩母函数局限性:由于中心距要求矩目函数的导数在 t = 0 t=0 t=0处取值,故前提假定矩目函数导数在 t = 0 t=0 t=0处有定义。但对于一些特殊概率密度函数(Gamma函数等)不再适用。为了使矩母函数具有普遍性,引入特征函数
ϕ X ( t ) = E ( e i t x ) , i 2 = − 1 \phi_X(t)=\mathbb{E}(e^{itx}),i^2=-1 ϕX(t)=E(eitx),i2=1
对于分布函数,都存在一个特征函数与其相互决定。当得到随机变量 X X X的特征函数表达式 ϕ X ( t ) \phi_X(t) ϕX(t)时利用傅里叶变换可以反推出概率密度函数,傅里叶变换为

f ( x ) = ∫ − ∞ ∞ e − i t x ϕ X ( t ) d t f(x)=\int_{-\infty}^{\infty}e^{-itx}\phi_X(t)dt f(x)=eitxϕX(t)dt


-END-

参考文献:

刘次华 . 随机过程(第五版) [M]. 华中科技大学出版社,2014

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值