随机过程入门基础
1 基本概念
试验的特性:
- 相同条件下重复进行
- 结果不止一个,事先知道所有样本结果
- 每次试验不知道出现哪个结果
样本空间:试验所有可能出现的结果,记作 Ω \Omega Ω
Ω \Omega Ω中的元素 e e e成为样本点或基本事件, Ω \Omega Ω的子集 A A A称为事件, Ω \Omega Ω为必然事件,空集 ∅ \empty ∅为不可能事件。如果 A A A为 Ω \Omega Ω的子集,则
- Ω \Omega Ω为事件,
- A A A为事件,则 A c A^c Ac也为事件
- A i ( i = 1 , 2 , … ) A_i(i=1,2,\dots) Ai(i=1,2,…)为事件,则 ⋃ i = 1 ∞ A i \bigcup_{i=1}^{\infty}{A_i} ⋃i=1∞Ai为事件
概率:用符号 P ( A ) \mathbb{P}(A) P(A)表示事件 A A A的概率,如果满足
- 非负性 P ( A ) ≥ 0 \mathbb{P}(A)\ge0 P(A)≥0
- 完备性 P ( Ω ) = 1 \mathbb{P}(\Omega)=1 P(Ω)=1
- 可加可列性
P ( ⋃ i = 1 ∞ A i ) = ∑ i ∞ P ( A ) \mathbb{P}(\bigcup_{i=1}^{\infty}{A_i})=\sum_i^{\infty}\mathbb{P}(A) P(i=1⋃∞Ai)=i∑∞P(A)
概率空间:设样本空间 Ω \Omega Ω,概率 P \mathbb{P} P和 σ \sigma σ代数域 F \mathscr{F} F,其三位一体 ( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)称为概率空间。
其中 F \mathscr{F} F表示全体事件,满足(交并补集在 σ \sigma σ代数域满足封闭性)
- 若 A i ∈ F A_i\in \mathscr{F} Ai∈F,则 A c ∈ F A^c \in \mathscr{F} Ac∈F
- A i , A j ∈ F , ∀ i , j A_i,A_j \in \mathscr{F},\forall i,j Ai,Aj∈F,∀i,j,则 A i ∩ A j ∈ F A_i \cap A_j \in \mathscr{F} Ai∩Aj∈F
- A i , A j ∈ F , ∀ i , j A_i,A_j \in \mathscr{F},\forall i,j Ai,Aj∈F,∀i,j,则 A i ∪ A j ∈ F A_i \cup A_j \in \mathscr{F} Ai∪Aj∈F
其中 P \mathbb{P} P表示事件的概率,满足
- P ( ∅ ) = 0 \mathbb{P}(\empty)=0 P(∅)=0
- A i ( i = 1 , 2 … ) A_i(i=1,2\dots) Ai(i=1,2…)两两互不相容时,下列等号成立
P ( ⋃ i = 1 n A i ) ≤ ∑ i n P ( A ) \mathbb{P}(\bigcup_{i=1}^{n}{A_i})\le\sum_i^{n}\mathbb{P}(A) P(i=1⋃nAi)≤i∑nP(A)
- 若 B ⊂ A B\subset A B⊂A,则 P ( A ) − P ( B ) = P ( A − B ) ≥ 0 \mathbb{P}(A)-\mathbb{P}(B) =\mathbb{P}(A-B) \ge0 P(A)−P(B)=P(A−B)≥0
- P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) \mathbb{P}(A\cup B) = \mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B) P(A∪B)=P(A)+P(B)−P(A∩B)
- P ( A ) > 0 \mathbb{P}(A)>0 P(A)>0,则
P ( B ∣ A ) = P ( A B ) P ( A ) \mathbb{P}(B|A)=\frac{\mathbb{P}(AB)}{\mathbb{P}(A)} P(B∣A)=P(A)P(AB)
乘法公式:
P
(
B
1
B
2
…
B
n
)
=
P
(
B
1
)
P
(
B
2
∣
B
1
)
…
P
(
B
n
∣
B
n
−
1
…
B
1
)
\mathbb{P}(B_1B_2\dots B_n)=\mathbb{P}(B_1)\mathbb{P}(B_2|B_1)\dots \mathbb{P}(B_n|B_{n-1}\dots B_1)
P(B1B2…Bn)=P(B1)P(B2∣B1)…P(Bn∣Bn−1…B1)
当
P
(
A
)
≥
0
\mathbb{P}(A)\ge 0
P(A)≥0时,条件概率
P
(
B
1
B
2
…
B
n
∣
A
)
=
P
(
B
1
∣
A
)
P
(
B
2
∣
B
1
A
)
…
P
(
B
n
∣
B
n
−
1
…
B
1
A
)
\mathbb{P}(B_1B_2\dots B_n|A)=\mathbb{P}(B_1|A)\mathbb{P}(B_2|B_1A)\dots \mathbb{P}(B_n|B_{n-1}\dots B_1A)
P(B1B2…Bn∣A)=P(B1∣A)P(B2∣B1A)…P(Bn∣Bn−1…B1A)
全概率公式
设
A
i
(
i
=
1
,
2
…
)
A_i(i=1,2\dots)
Ai(i=1,2…)互不相容,当
B
⊂
⋃
i
=
1
∞
A
i
B \subset \bigcup_{i=1}^{\infty}{A_i}
B⊂⋃i=1∞Ai且
⋃
i
=
1
∞
A
i
=
Ω
\bigcup_{i=1}^{\infty}{A_i} = \Omega
⋃i=1∞Ai=Ω时
P
(
B
)
=
∑
i
=
1
∞
P
(
B
A
i
)
=
∑
i
=
1
∞
P
(
B
∣
A
i
)
P
(
A
i
)
\mathbb{P}(B) = \sum_{i=1}^{\infty}\mathbb{P}(BA_i)=\sum_{i=1}^{\infty}\mathbb{P}(B|A_i)\mathbb{P}(A_i)
P(B)=i=1∑∞P(BAi)=i=1∑∞P(B∣Ai)P(Ai)
当
P
(
A
)
≥
0
\mathbb{P}(A)\ge 0
P(A)≥0时,条件概率
P
(
B
)
=
∑
i
=
1
∞
P
(
B
A
i
∣
A
)
=
∑
i
=
1
∞
P
(
B
∣
A
i
A
)
P
(
A
i
A
)
\mathbb{P}(B) = \sum_{i=1}^{\infty}\mathbb{P}(BA_i|A)=\sum_{i=1}^{\infty}\mathbb{P}(B|A_iA)\mathbb{P}(A_iA)
P(B)=i=1∑∞P(BAi∣A)=i=1∑∞P(B∣AiA)P(AiA)
贝叶斯公式
P
(
A
∣
B
)
=
P
(
B
∣
A
)
P
(
A
)
P
(
B
)
\mathbb{P}(A|B)=\frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}
P(A∣B)=P(B)P(B∣A)P(A)
设
A
i
(
i
=
1
,
2
…
)
A_i(i=1,2\dots)
Ai(i=1,2…)互不相容,当
B
⊂
⋃
i
=
1
∞
A
i
B \subset \bigcup_{i=1}^{\infty}{A_i}
B⊂⋃i=1∞Ai且
⋃
i
=
1
∞
A
i
=
Ω
\bigcup_{i=1}^{\infty}{A_i} = \Omega
⋃i=1∞Ai=Ω时
P
(
A
i
∣
B
)
=
P
(
B
∣
A
i
)
P
(
A
i
)
∑
k
=
1
∞
P
(
B
∣
A
k
)
P
(
A
k
)
\mathbb{P}(A_i|B)=\frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{k=1}^{\infty}\mathbb{P}(B|A_k)\mathbb{P}(A_k)}
P(Ai∣B)=∑k=1∞P(B∣Ak)P(Ak)P(B∣Ai)P(Ai)
概率连续性:
{
P
(
⋃
i
=
1
n
A
i
)
=
lim
n
→
∞
P
(
A
n
)
A
1
⊂
A
2
⊂
…
P
(
⋂
i
=
1
n
B
i
)
=
lim
n
→
∞
P
(
B
n
)
B
1
⊃
B
2
⊃
…
\left\{\begin{array}{l} \mathbb{P}(\bigcup_{i=1}^{n}{A_i}) = \mathop {\lim }\limits_{{\text{n}} \to \infty } \mathbb{P}(A_n) & A_1 \subset A_2 \subset \dots \\ \\ \mathbb{P}(\bigcap_{i=1}^{n}{B_i}) = \mathop {\lim }\limits_{{\text{n}} \to \infty } \mathbb{P}(B_n) & B_1 \supset B_2 \supset \dots \end{array}\right.
⎩
⎨
⎧P(⋃i=1nAi)=n→∞limP(An)P(⋂i=1nBi)=n→∞limP(Bn)A1⊂A2⊂…B1⊃B2⊃…
2 随机变量
2.1 一维情形
随机变量是定义在样本空间
Ω
\Omega
Ω上的函数
F
X
(
t
)
=
P
(
X
≤
t
)
F_X(t)=\mathbb{P}(X\le t)
FX(t)=P(X≤t)
为
X
X
X分布函数,且单调不减右连续,对于连续型随机变量,
F
X
(
t
)
=
P
(
X
≤
t
)
=
∫
−
∞
t
f
(
s
)
d
s
F_X(t)=\mathbb{P}(X\le t) = \int_{-\infty}^tf(s)ds
FX(t)=P(X≤t)=∫−∞tf(s)ds
其中
f
(
s
)
f(s)
f(s)为随机变量
X
X
X的概率密度函数,设
x
∈
A
x \in A
x∈A,则
P
(
X
∈
A
)
=
∫
A
f
(
s
)
d
s
\mathbb{P}(X\in A) = \int_A f(s)ds
P(X∈A)=∫Af(s)ds
2.2 多维情形
设
x
i
(
i
=
1
,
…
n
)
x_i(i=1,\dots n)
xi(i=1,…n)为随机变量,则
X
=
(
x
1
,
x
2
,
…
x
n
)
X = (x_1,x_2,\dots x_n)
X=(x1,x2,…xn)称为随机向量。定义在函数
R
n
R^n
Rn上的
n
n
n元函数
F
X
(
x
1
,
x
2
,
…
x
n
)
=
P
(
X
1
≤
x
1
,
X
2
≤
x
2
…
X
n
≤
x
n
)
F_X(x_1,x_2,\dots x_n)=\mathbb{P}(X_1\le x_1,X_2\le x_2\dots X_n\le x_n)
FX(x1,x2,…xn)=P(X1≤x1,X2≤x2…Xn≤xn)
称为随机向量
X
=
(
x
1
,
x
2
,
…
x
n
)
X = (x_1,x_2,\dots x_n)
X=(x1,x2,…xn)上的分布函数。对于连续型随机向量
X
X
X,
P
(
X
∈
D
)
=
∫
D
f
(
X
)
d
x
1
d
x
2
…
d
x
n
\mathbb{P}(X\in D) =\int_Df(X)dx_1dx_2\dots dx_n
P(X∈D)=∫Df(X)dx1dx2…dxn
其中
f
(
X
)
=
f
(
x
1
,
x
2
,
…
x
n
)
f(X) = f(x_1,x_2,\dots x_n)
f(X)=f(x1,x2,…xn)是随机向量
X
X
X的联合概率密度函数,
D
D
D为定义在
R
n
R^n
Rn上的区域
2 随机过程
2.1 随机过程定义
设 ( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)为概率空间, T T T为参数集,对于 ∀ t ∈ T \forall t \in T ∀t∈T,均有定义在概率空间上的一个随机变量 X t ( ω ) , ω ∈ Ω X_t(\omega),\omega\in \Omega Xt(ω),ω∈Ω与之相对应,则称 { X t : t ∈ T } \{X_t:t\in T\} {Xt:t∈T}为概率空间 ( Ω , P , F ) (\Omega,\mathbb{P},\mathscr{F}) (Ω,P,F)上的随机过程。
注: t t t一般指事件,参数集 T T T为事件参数; X t X_t Xt视为过程在时刻 t t t的状态, X t X_t Xt的取值范围为状态空间 S S S
对于随机过程 X t ( ω ) X_t(\omega) Xt(ω)包括时间与状态两个维度
- 当固定状态 ω \omega ω时, X t X_t Xt称为样本函数或轨迹,或随机过程的一次实现
- 当固定事件 t t t时, X ( ω ) X(\omega) X(ω)称为一个随机变量
所有样本函数与随机变量的集合称为随机过程,即随机过程是所有随机样本函数的集合
2.2 随机变量期望
离散型
设
X
X
X的离散概率分布如下:
p
i
=
P
(
X
=
x
i
)
,
i
=
1
,
2
…
p_i = \mathbb{P}(X=x_i),i=1,2\dots
pi=P(X=xi),i=1,2…
则
E
X
=
∑
i
=
1
∞
x
i
p
i
⟺
∑
k
=
1
∞
P
(
X
≥
k
)
\mathbb{E} X=\sum_{i=1}^{\infty}x_ip_i \Longleftrightarrow \sum_{k=1}^{\infty}\mathbb{P}(X\ge k)
EX=i=1∑∞xipi⟺k=1∑∞P(X≥k)
proof:
∑ k = 1 ∞ P ( X ≥ k ) = ∑ k = 1 ∞ ∑ i = k ∞ P ( X = i ) = ∑ i = 1 ∞ ∑ k = 1 i P ( X = i ) = ∑ i = 1 ∞ i P ( X = i ) = E X \begin{aligned} \sum_{k=1}^{\infty}\mathbb{P}(X\ge k)=&\sum_{k=1}^{\infty}\sum_{i=k}^{\infty}\mathbb{P}(X=i)\\ \\ =&\sum_{i=1}^{\infty}\sum_{k=1}^{i}\mathbb{P}(X=i)\\ \\ =&\sum_{i=1}^{\infty}i\mathbb{P}(X=i)=\mathbb{E}X \end{aligned} k=1∑∞P(X≥k)===k=1∑∞i=k∑∞P(X=i)i=1∑∞k=1∑iP(X=i)i=1∑∞iP(X=i)=EX
二阶原点矩
E
X
2
=
∑
i
=
1
∞
x
i
2
p
i
\mathbb{E} X^2=\sum_{i=1}^{\infty}x_i^2p_i
EX2=i=1∑∞xi2pi
连续型:
设
X
X
X为密度函数
f
(
x
)
f(x)
f(x)的随机变量,即
P
(
X
≤
a
)
=
∫
−
∞
a
f
(
x
)
d
x
\mathbb{P}(X\le a) = \int_{-\infty}^af(x)dx
P(X≤a)=∫−∞af(x)dx
期望为
E
X
=
∫
−
∞
∞
x
f
(
x
)
d
x
\mathbb{E}X = \int_{-\infty}^{\infty} xf(x)dx
EX=∫−∞∞xf(x)dx
二阶原点矩为
E
X
2
=
∫
−
∞
∞
x
2
f
(
x
)
d
x
\mathbb{E}X^2 = \int_{-\infty}^{\infty} x^2f(x)dx
EX2=∫−∞∞x2f(x)dx
2.3 卷积公式
离散型
设随机变量
X
,
Y
X,Y
X,Y相互独立,满足
P
(
X
=
k
)
=
a
k
;
P
(
Y
=
k
)
=
b
k
;
k
=
0
,
1
…
\mathbb{P}(X=k)=a_k;\mathbb{P}(Y=k)=b_k;k=0,1\dots
P(X=k)=ak;P(Y=k)=bk;k=0,1…
则
Z
=
X
+
Y
=
n
(
n
≥
0
)
Z = X+Y=n(n\ge 0)
Z=X+Y=n(n≥0)的概率为
P
(
Z
=
n
)
=
P
(
X
+
Y
=
n
)
=
∑
i
=
0
n
P
(
X
=
i
,
Y
=
n
−
i
)
=
∑
i
=
0
n
P
(
X
=
i
)
P
(
Y
=
n
−
i
)
=
∑
i
=
0
n
a
i
b
n
−
i
\begin{aligned} \mathbb{P}(Z=n)=&\mathbb{P}(X+Y=n)\\ \\ =&\sum_{i=0}^n \mathbb{P} (X=i,Y=n-i)\\ =&\sum_{i=0}^n\mathbb{P}(X=i) \mathbb{P}(Y=n-i)\\ =&\sum_{i=0}^na_ib_{n-i} \end{aligned}
P(Z=n)====P(X+Y=n)i=0∑nP(X=i,Y=n−i)i=0∑nP(X=i)P(Y=n−i)i=0∑naibn−i
令
P
(
Z
=
n
)
=
c
n
\mathbb{P}(Z=n)=c_n
P(Z=n)=cn,则
c
n
=
∑
i
=
0
n
a
i
b
n
−
i
c_n =\sum_{i=0}^na_ib_{n-i}
cn=i=0∑naibn−i
称序列
{
c
n
}
\{c_n\}
{cn}为卷积
连续型:
设
X
X
X,
Y
Y
Y独立,分布函数分别为
F
(
X
)
,
F
(
Y
)
F(X),F(Y)
F(X),F(Y),令
U
=
X
+
Y
U = X+Y
U=X+Y,
U
U
U的分布函数为
U
(
t
)
=
P
(
X
+
Y
≤
t
)
=
∑
0
≤
s
≤
t
P
(
X
+
Y
≤
t
∣
Y
=
s
)
P
(
Y
=
s
)
=
∫
0
t
P
(
X
≤
t
−
s
)
d
G
(
s
)
=
∫
0
t
F
(
t
−
s
)
d
G
(
s
)
\begin{aligned} U(t) = &\mathbb{P}(X+Y\le t)\\ \\ =&\sum_{0\le s \le t}\mathbb{P}(X+Y\le t|Y=s)\mathbb{P}(Y=s)\\ \\ =&\int_0^t\mathbb{P}(X\le t-s)dG(s)\\ \\ =&\int_0^tF(t-s)dG(s) \end{aligned}
U(t)====P(X+Y≤t)0≤s≤t∑P(X+Y≤t∣Y=s)P(Y=s)∫0tP(X≤t−s)dG(s)∫0tF(t−s)dG(s)
易得
U
(
t
)
=
∫
0
t
F
(
t
−
s
)
d
G
(
s
)
=
∫
0
t
G
(
t
−
s
)
d
F
(
s
)
U(t)=\int_0^tF(t-s)dG(s)=\int_0^tG(t-s)dF(s)
U(t)=∫0tF(t−s)dG(s)=∫0tG(t−s)dF(s)
两个随机变量
X
,
Y
X,Y
X,Y独立,概率密度分别为
f
(
x
)
、
g
(
y
)
f(x)、g(y)
f(x)、g(y),则
U
=
X
+
Y
U=X+Y
U=X+Y的概率密度为
u
(
t
)
=
∫
0
t
f
(
t
−
s
)
g
(
s
)
=
(
f
∗
g
)
(
s
)
u
(
t
)
=
∫
0
t
g
(
t
−
s
)
f
(
s
)
=
(
g
∗
f
)
(
s
)
\begin{aligned} u(t)=\int_0^tf(t-s)g(s)=(f*g)(s)\\ \\ u(t)=\int_0^tg(t-s)f(s)=(g*f)(s)\\ \end{aligned}
u(t)=∫0tf(t−s)g(s)=(f∗g)(s)u(t)=∫0tg(t−s)f(s)=(g∗f)(s)
故交换律
(
f
∗
g
)
(
s
)
=
(
g
∗
f
)
(
s
)
(f*g)(s) = (g*f)(s)
(f∗g)(s)=(g∗f)(s)
成立。
3 概率母函数
定义概率母函数(generating funtion)
G
X
(
s
)
=
E
s
x
=
∑
k
=
0
∞
s
k
P
(
x
=
k
)
,
s
∈
[
−
1
,
1
]
G_X(s)=\mathbb{E}s^x = \sum_{k=0}^{\infty}s^k\mathbb{P}(x=k),s\in[-1,1]
GX(s)=Esx=k=0∑∞skP(x=k),s∈[−1,1]
对于
G
X
(
s
)
G_X(s)
GX(s)对
s
s
s求一阶导
G
X
′
(
s
)
=
E
(
x
s
x
−
1
)
=
∑
k
=
0
∞
k
s
k
−
1
P
(
x
=
k
)
G_X'(s)=\mathbb{E}(xs^{x-1})=\sum_{k=0}^{\infty}ks^{k-1}\mathbb{P}(x=k)
GX′(s)=E(xsx−1)=k=0∑∞ksk−1P(x=k)
对于
G
X
(
s
)
G_X(s)
GX(s)对
s
s
s求二阶导
G
X
′
′
(
s
)
=
E
(
x
(
x
−
1
)
s
x
−
2
)
=
∑
k
=
0
∞
k
(
k
−
1
)
s
k
−
2
P
(
x
=
k
)
G_X''(s)=\mathbb{E}(x(x-1)s^{x-2})=\sum_{k=0}^{\infty}k(k-1)s^{k-2}\mathbb{P}(x=k)
GX′′(s)=E(x(x−1)sx−2)=k=0∑∞k(k−1)sk−2P(x=k)
令
s
=
1
s=1
s=1,
G
X
′
(
1
)
=
∑
k
=
0
∞
k
P
(
x
=
k
)
=
E
X
G_X'(1)=\sum_{k=0}^{\infty}k\mathbb{P}(x=k)=\mathbb{E}X
GX′(1)=k=0∑∞kP(x=k)=EX
G X ′ ′ ( 1 ) = ∑ k = 0 ∞ k ( k − 1 ) P ( x = k ) = E X ( X − 1 ) = E X 2 − E X G_X''(1)=\sum_{k=0}^{\infty}k(k-1)\mathbb{P}(x=k)=\mathbb{E}X(X-1)=\mathbb{E}X^2-\mathbb{E}X GX′′(1)=k=0∑∞k(k−1)P(x=k)=EX(X−1)=EX2−EX
于是得到
- G X ′ ( 1 ) = E X G_X'(1)=\mathbb{E}X GX′(1)=EX
- E X 2 = G X ′ ′ ( 1 ) + G X ′ ( 1 ) \mathbb{E}X^2=G''_X(1)+G'_X(1) EX2=GX′′(1)+GX′(1)
- V a r ( X ) = E X 2 − ( E X ) 2 = G X ′ ′ ( 1 ) + G X ′ ( 1 ) − [ G X ′ ( 1 ) ] 2 Var(X) = \mathbb{E}X^2-(\mathbb{E}X)^2 = G''_X(1)+G'_X(1)-[G'_X(1)]^2 Var(X)=EX2−(EX)2=GX′′(1)+GX′(1)−[GX′(1)]2
4 矩母函数
设任意概率密度函数
f
(
x
)
f(x)
f(x)的随机变量为
X
X
X,其矩母函数构造如下
M
X
(
t
)
=
E
(
e
t
x
)
=
∫
−
∞
∞
e
t
x
f
(
x
)
d
x
M_X(t)=\mathbb{E}(e^{tx})=\int_{-\infty}^{\infty}e^{tx}f(x)dx
MX(t)=E(etx)=∫−∞∞etxf(x)dx
根据级数相关知识
e
x
=
∑
k
=
0
∞
x
k
k
!
e^x =\sum_{k=0}^{\infty}\frac{x^k}{k!}
ex=k=0∑∞k!xk
则
M
X
(
t
)
=
∫
−
∞
∞
e
t
x
f
(
x
)
d
x
=
∫
−
∞
∞
∑
k
=
0
∞
(
t
x
)
k
k
!
f
(
x
)
d
x
=
∑
k
=
0
∞
t
k
k
!
∫
−
∞
∞
x
k
f
(
x
)
d
x
=
∑
k
=
0
∞
t
k
k
!
E
X
k
=
1
+
t
E
X
+
t
2
2
!
E
X
2
+
⋯
+
t
k
k
!
E
X
k
+
…
\begin{aligned} M_X(t)=&\int_{-\infty}^{\infty}e^{tx}f(x)dx\\ \\ =&\int_{-\infty}^{\infty}\sum_{k=0}^{\infty}\frac{(tx)^k}{k!}f(x)dx\\ \\ =&\sum_{k=0}^{\infty}\frac{t^k}{k!}\int_{-\infty}^{\infty}x^kf(x)dx\\ \\ =&\sum_{k=0}^{\infty}\frac{t^k}{k!}\mathbb{E}X^k \\ =&1+t\mathbb{E}X+\frac{t^2}{2!}\mathbb{E}X^2+\dots+\frac{t^k}{k!}\mathbb{E}X^k+\dots \end{aligned}
MX(t)=====∫−∞∞etxf(x)dx∫−∞∞k=0∑∞k!(tx)kf(x)dxk=0∑∞k!tk∫−∞∞xkf(x)dxk=0∑∞k!tkEXk1+tEX+2!t2EX2+⋯+k!tkEXk+…
因此,矩母函数包含了随机变量
X
X
X各阶中心矩
E
X
n
(
n
=
1
,
2
…
)
\mathbb{E}X^n(n=1,2\dots)
EXn(n=1,2…),矩母函数大大简化了求分布函数的矩的复杂性。对
M
X
(
t
)
=
∫
−
∞
∞
e
t
x
f
(
x
)
d
x
M_X(t)=\int_{-\infty}^{\infty}e^{tx}f(x)dx
MX(t)=∫−∞∞etxf(x)dx关于
t
t
t求导,得
{
d
M
X
(
t
)
d
t
=
∫
−
∞
∞
e
t
x
x
f
(
x
)
d
x
d
M
X
2
(
t
)
d
t
2
=
∫
−
∞
∞
e
t
x
x
2
f
(
x
)
d
x
⋮
d
M
X
n
(
t
)
d
t
n
=
∫
−
∞
∞
e
t
x
x
n
f
(
x
)
d
x
\left\{\begin{array}{l} \frac{dM_X(t)}{dt}=\int_{-\infty}^{\infty}e^{tx}xf(x)dx\\ \\ \frac{dM^2_X(t)}{dt^2}=\int_{-\infty}^{\infty}e^{tx}x^2f(x)dx\\ \\ \vdots \\ \frac{dM^n_X(t)}{dt^n}=\int_{-\infty}^{\infty}e^{tx}x^nf(x)dx\\ \end{array}\right.
⎩
⎨
⎧dtdMX(t)=∫−∞∞etxxf(x)dxdt2dMX2(t)=∫−∞∞etxx2f(x)dx⋮dtndMXn(t)=∫−∞∞etxxnf(x)dx
令
t
=
0
t=0
t=0则
{
d
M
X
(
t
)
d
t
∣
t
=
0
=
∫
−
∞
∞
x
f
(
x
)
d
x
=
E
X
d
M
X
2
(
t
)
d
t
2
∣
t
=
0
=
∫
−
∞
∞
x
2
f
(
x
)
d
x
=
E
X
2
⋮
d
M
X
n
(
t
)
d
t
n
∣
t
=
0
=
∫
−
∞
∞
x
n
f
(
x
)
d
x
=
E
X
n
\left\{\begin{array}{l} \frac{dM_X(t)}{dt}|_{t=0}=\int_{-\infty}^{\infty}xf(x)dx = \mathbb{E}X\\ \\ \frac{dM^2_X(t)}{dt^2}|_{t=0}=\int_{-\infty}^{\infty}x^2f(x)dx=\mathbb{E}X^2\\ \\ \vdots \\ \frac{dM^n_X(t)}{dt^n}|_{t=0}=\int_{-\infty}^{\infty}x^nf(x)dx=\mathbb{E}X^n\\ \end{array}\right.
⎩
⎨
⎧dtdMX(t)∣t=0=∫−∞∞xf(x)dx=EXdt2dMX2(t)∣t=0=∫−∞∞x2f(x)dx=EX2⋮dtndMXn(t)∣t=0=∫−∞∞xnf(x)dx=EXn
5 特征函数
矩母函数局限性:由于中心距要求矩目函数的导数在
t
=
0
t=0
t=0处取值,故前提假定矩目函数导数在
t
=
0
t=0
t=0处有定义。但对于一些特殊概率密度函数(Gamma函数等)不再适用。为了使矩母函数具有普遍性,引入特征函数
ϕ
X
(
t
)
=
E
(
e
i
t
x
)
,
i
2
=
−
1
\phi_X(t)=\mathbb{E}(e^{itx}),i^2=-1
ϕX(t)=E(eitx),i2=−1
对于分布函数,都存在一个特征函数与其相互决定。当得到随机变量
X
X
X的特征函数表达式
ϕ
X
(
t
)
\phi_X(t)
ϕX(t)时利用傅里叶变换可以反推出概率密度函数,傅里叶变换为
f ( x ) = ∫ − ∞ ∞ e − i t x ϕ X ( t ) d t f(x)=\int_{-\infty}^{\infty}e^{-itx}\phi_X(t)dt f(x)=∫−∞∞e−itxϕX(t)dt
参考文献:
刘次华 . 随机过程(第五版) [M]. 华中科技大学出版社,2014