CCF CSP题解:坐标变换(其二)(202309-2)

链接和思路

OJ链接:传送门

对于平面直角坐标系上的坐标 ( x , y ) (x,y) (x,y),定义如下2种操作:

  1. 拉伸 k k k倍:横坐标 x x x变为 k x kx kx, 纵坐标 y y y 变为 k y ky ky
  2. 旋转 θ \theta θ :将坐标 ( x , y ) (x,y) (x,y) 绕坐标原点 ( 0 , 0 ) (0,0) (0,0) 逆时针旋转 θ \theta θ 弧度( 0 ≤ θ < 2 π 0 \le \theta < 2 \pi 0θ<2π)。易知旋转后的横坐标为 x cos ⁡ θ − y sin ⁡ θ x \cos \theta - y \sin \theta xcosθysinθ,纵坐标为 x sin ⁡ θ + y cos ⁡ θ x \sin \theta + y\cos \theta xsinθ+ycosθ

本题要求将平面坐标 ( x , y ) (x, y) (x,y),经过 n n n个操作 ( t 1 , t 2 , ⋯   , t n ) (t_1, t_2, \cdots, t_n) (t1,t2,,tn)后,对于给定的操作序列,计算 m m m个如下查询:

  • i j x y:坐标 ( x , y ) (x,y) (x,y)经过操作 t i , ⋯   , t j t_i, \cdots, t_j ti,,tj 1 ≤ i ≤ j ≤ n 1 \le i \le j \le n 1ijn)后的新坐标。

在考场上,笔者发现此题为区间查询问题,因而首先想到使用树状数组。但是树状数组的建树的时间复杂度虽然为 O ( n ) O(n) O(n),但是每次查询的时间复杂度为 O ( l o g   n ) O(log\ n) O(log n)。而此题不涉及到对区间值的修改,因而无需使用树状数组,只需要记录 k k k的前缀和和 θ \theta θ的前缀积即可。前缀和向量和前缀积向量的建立的时间复杂度为 O ( n ) O(n) O(n),每次区间查询的时间复杂度为 O ( 1 ) O(1) O(1)

具体而言,由于拉伸和旋转2种行为相互独立,我们只需分别求出经过 n n n个操作 ( t 1 , t 2 , ⋯   , t n ) (t_1, t_2, \cdots, t_n) (t1,t2,,tn)后,总共旋转的角度和拉伸的倍数。我们仅需维护2个向量:

  1. 拉伸前缀积向量 k = ( k 0 , k 1 , k 2 , ⋯   , k n ) \mathbf k = (k_0,k_1, k_2,\cdots,k_n) k=(k0,k1,k2,,kn),其中 k 0 = 1 k_0=1 k0=1 k i k_i ki为前 i i i次操作的总拉伸的倍数,即前缀积;
  2. 旋转前缀和向量θ = ( θ 0 , θ 1 , θ 2 , ⋯   , θ n ) = (\theta_0,\theta_1, \theta_2,\cdots,\theta_n) =(θ0,θ1,θ2,,θn),其中 θ 0 = 0 \theta_0=0 θ0=0 θ i \theta_i θi为前 i i i次操作的总旋转角度,即前缀和。

被查询坐标 ( x , y ) (x, y) (x,y)经过 t i , ⋯   , t j t_i, \cdots, t_j ti,,tj 1 ≤ i ≤ j ≤ n 1 \le i \le j \le n 1ijn)后,拉伸倍数为 k j / k i − 1 k_j / k_{i-1} kj/ki1,角度为 θ j − θ i − 1 \theta_j-\theta_{i-1} θjθi1

AC代码

#include <bits/stdc++.h>

using namespace std;

int n, m;

vector<double> xita(100005);
vector<double> k(100005, 1);


int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        int type;
        double value;
        cin >> type >> value;
        if (type == 1) {
            k[i] = k[i - 1] * value;
            xita[i] = xita[i - 1];
        } else {
            k[i] = k[i - 1];
            xita[i] = xita[i - 1] + value;
        }
    }

    for (int i = 0; i < m; ++i) {
        int l, r;
        double x, y;
        cin >> l >> r >> x >> y;

        double sum_xita = xita[r] - xita[l - 1];
        double pro_k = k[r] / k[l - 1];

        cout << fixed << setprecision(3) << (x * cos(sum_xita) - y * sin(sum_xita)) * pro_k << " "
             << (x * sin(sum_xita) + y * cos(sum_xita)) * pro_k << endl;
    }

    return 0;
}

  • 14
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
CSP-S2提高组是中国计算机学会(CCF)主办的一项全国性计算机竞赛,旨在挑选出优秀的高中生并为他们提供提高计算机科学和编程能力的平台。2021年第二轮题解分为以下几个部分。 第一题是关于石头游戏的思考。题目给出了一堆石头的数量,两位玩家轮流选择石头进行取走,每次可以取走1个或者2个石头,最后无法继续取走者输掉游戏。通过观察可以发现,如果一开始给定的石头数量是3的倍数,那么第一个选手必胜;否则,第一个选手无法必胜。这是因为无论第一个选手怎么选取,第二个选手总可以使得每一轮选取后的石头数量保持在3的倍数。因此,只需要判断起始时石头数量是否为3的倍数即可。 第二题是关于好书的购买。题目给出了若干种书的价格和折扣情况,要求在有限的预算下买到尽可能多的书籍。这是一个经典的背包问题。使用动态规划算法可以解决,按照价格从小到大的顺序遍历书籍,设置一个二维数组dp[i][j]表示在前i本书中,花费j的预算能够买到的最多书籍数量。状态转移方程为:dp[i][j]=max(dp[i-1][j], dp[i-1][j-price[i]]+1)。最终的结果即为dp[n][budget],其中n为书籍总数,budget为预算。 第三题是关于均匀生成所有正整数的问题。题目给出了一个区间[L, R],要求输出在该区间内存在的所有正整数。首先通过观察可以发现,对于任意的正整数x,若2x在区间[L, R]内,那么x也在该区间内;若2x+1在区间[L, R]内,那么x也在该区间内。基于这个思路,可以使用递归的方式实现。若L<=R,则输出L,然后递归输出从2*L到R的所有整数。若L>R,则结束递归。 以上就是CSP-S2提高组2021第二轮题解的简要概述。希望这些解题思路对参与竞赛的同学有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曹无悔

请支持我的梦想!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值