202309-2 坐标变换(其二)
1. 解题思路
通过缓存中间结果来减少重复计算。
预计算累积变换:预先计算每个操作序列中所有点的累积变换结果,这样在处理查询时,可以直接应用预计算结果,而不必重新计算。
- 对于拉伸操作,可以存储累积的拉伸倍数。
- 对于旋转操作,可以存储累积的旋转角度。
分段处理:通过记录每一步操作后的坐标变换,然后在查询时直接使用这些中间结果。
2. 代码实现
C++题解:
超时的:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int main() {
int action_num, qurrey_num;
cin >> action_num >> qurrey_num;
vector<vector<double>> action(action_num, vector<double>(2));
vector<vector<double>> qurrey(qurrey_num, vector<double>(4));
for (int i = 0; i < action_num; i++) {
cin >> action[i][0];
cin >> action[i][1];
}
for (int i = 0; i < qurrey_num; i++) {
int start, end;
double x, y;
cin >> start >> end >> x >> y;
qurrey[i][0] = start;
qurrey[i][1] = end;
qurrey[i][2] = x;
qurrey[i][3] = y;
}
for (int i = 0; i < qurrey_num; i++) {
int start = qurrey[i][0];
int end = qurrey[i][1];
double x = qurrey[i][2];
double y = qurrey[i][3];
double k = 1;
double theta = 0;
for (int j = start - 1; j < end; j++) {
if (action[j][0] == 1) {
k *= action[j][1];
} else if (action[j][0] == 2) {
theta += action[j][1];
}
}
x *= k;
y *= k;
double temp_x = x;
x = x * cos(theta) - y * sin(theta);
y = temp_x * sin(theta) + y * cos(theta);
//cout << x << " " << y << endl;
printf("%f %f\n", x, y);
}
return 0;
}
优化后的:
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int main() {
int action_num, query_num;
cin >> action_num >> query_num;
vector<double> scale(action_num + 1, 1.0); // 累积拉伸倍数
vector<double> angle(action_num + 1, 0.0); // 累积旋转角度
for (int i = 1; i <= action_num; i++) {
int type;
double value;
cin >> type >> value;
if (type == 1) { // 拉伸操作
scale[i] = scale[i - 1] * value;
angle[i] = angle[i - 1];
} else if (type == 2) { // 旋转操作
scale[i] = scale[i - 1];
angle[i] = angle[i - 1] + value;
}
}
for (int i = 0; i < query_num; i++) {
int start, end;
double x, y;
cin >> start >> end >> x >> y;
// 计算从 start 到 end 的累积变换
double total_scale = scale[end] / scale[start - 1];
double total_angle = angle[end] - angle[start - 1];
// 先进行拉伸变换
x *= total_scale;
y *= total_scale;
// 再进行旋转变换
double new_x = x * cos(total_angle) - y * sin(total_angle);
double new_y = x * sin(total_angle) + y * cos(total_angle);
// 输出结果
printf("%.6f %.6f\n", new_x, new_y);
}
return 0;
}