离散数学-第合论知识总结(修改版)

第合论

集合与关系

基本概念
  1. 集合:一些对象的整体就称为一个集合,这个整体的每个对象称为该集合的一个元素。用大写字母表示集合,小写字母表示元素。集合中的元素是无序的不重复的。

  2. 集合的表示方法:列举法,叙述法,枚举法,文氏图

  3. 子集:设AB是任何两个集合,假如A的每一个元素都是B的成员,则称A为B的子集,或A包含于B内,或者B包含A,记为A$\subseteq B . 如 果 集 合 A 的 每 一 个 元 素 都 属 于 B 。 但 集 合 B 中 至 少 有 一 个 元 素 不 属 于 A , 则 称 A 为 B 的 真 子 集 , 即 A B.如果集合A的每一个元素都属于B。但集合B中至少有一个元素不属于A,则称A为B的真子集,即A B.ABBAABA\subset B , 且 A 不 等 于 B , 记 为 A B,且A不等于B,记为A BABA\neq$B。

  4. 基数:集合中元素的个数

  5. 子集个数: 2 n 2^{n} 2n

  6. 平凡子集:集合本身和空集。

  7. 集合相等:两个集合A和B相等,当且仅当它们具有相同的元素,记为A=B,即a属于集合A当且仅当a属于集合B。集合相等的充要条件是两个集合互为子集。

  8. 空集:不包含任何元素的集合,记为 ∅ \emptyset

    • 空集是任何集合的子集
  9. 全集:在一定范围内,如果所有的集合均为某一集合的子集,则称该集合为全集。

  10. 补集:集合A的补集记为~A,是那些不属于集合A的元素构成的集合。通常是是存在一个全集的情况下讨论

  11. 幂集:集合A的幂集,记为P(A),是A所有子集所构成的集合。

  12. 序偶:由两个元素x,y按照一定的次序组成的二元组称为有序偶对(序偶),记作<x,y>,其中x为第一个元素,y是第二个元素。序偶常常表达两个客体之间的关系。

  13. n重有序组(n元组):由你个元素按照一定的次序组成的n元组称为n重有序组,记作<a1,a2,….,an>。

  14. 笛卡尔积:设AB是两个集合,若序偶的第一个成员是A的元素,第二个成员是B的元素,所有这样的序偶的集合叫做A和B的笛卡尔积或者直积,记作A × \times ×B

  15. 关系:AB为非空集合称A × \times ×B的任意子集R为从A到B的一个二元关系,简称关系,A为R的前域,B为R的后域。A=B,称R是A上的一个二元关系。若<x,y> ∈ \in R,记为xRy,读作x对y有关系R。由A到B的关系共有 2 ∣ A ∣ × ∣ B ∣ 2^{|A|\times|B|} 2A×B

  16. 特殊关系:全域关系:A × \times ×B,空关系,恒等关系:设Ix是X上的二元关系且满足Ix = {<x,x>|x ∈ \in X},则称Ix是X上的恒等关系。

  17. 定义域和值域:设R是从A到B的二元关系,C={x|x ∈ \in A, ∃ \exist y ∈ \in B,<x,y> ∈ \in R}第一位置出现的所有元素为定义域,记为C=domR.第二位置出现的所有元素为值域,记为D=ranR。域fldR=domR$\cup $ranR

  18. 闭包:设R是X上的二元关系,如果另一个关系R‘满足:

    1. R’是自反(对称,传递)

    2. R$\subseteq $R’

    3. 对于A上的全部自反的(对称的,传递的)关系R‘’,若R$\subseteq R ’ ‘ , 则 R ‘ R’‘,则R‘ R,R\subseteq $R’‘

      则称R’是R的自反(对称,传递)闭包。

      换句话说,R的自反闭包是包含R的最小的自反的关系。通常用r®,s®,t®表示R的自反,对称,传递闭包

  19. 集合的划分和覆盖:设A是一个集合,A1,……Am是A的任何m个非空子集,如果它们满足:

    • 它们的并集=A则称集合{A1,…,Am}为A的一个覆盖
    • 对一切的i ≠ \neq =j,都有$A_{i}\cap A_{j}=\emptyset $则称集合{A1,…,Am}为集合A的一个划分,A1,…Am叫做这个划分的
    • 若{A1,A2,…,Ar}与{B1,…,Bs}是同一集合A的两种划分,则其中所有Ai$\cap B j Bj Bj\neq \emptyset $组成的集合称为原来两种划分的交叉划分
    • 给定X的、forall两个划分,若对于每个 A i 均 有 B k A_{}i均有B_{k} AiBk,使 A i ⊆ B k A_{i}\subseteq B_{k} AiBk,z则{A1,…,Ar}称为是{b1,b2,…,Bs}的加细
  20. 等价关系:设R是定义在集合A上的关系,如果R是自反的,对称的,传递的,则称关系R为A上的等价关系。

  21. 等价类:设R是集合A上的等价关系,对任意x ∈ \in A,称集合[x] R _{R} R:

    [ x ] R = y ∣ ( y ∈ A ) ∧ ( < x , y > ∈ R ) [x]_{R}={y|(y\in A)\land (<x,y>\in R)} [x]R=y(yA)(<x,y>R)

    为x关于R的等价类,或者叫作由x生产的一个R的等价类。其中x称为[x] R _{R} R的生成元。

  22. 商集:设R是集合A上的等价关系,由R确定的一切等价类的集合,称为集合A上的关于R的商集,记为A/R。

  23. 等价和划分之间的关系:设R是集合A上的等价关系,则此关系R可唯一的确定一个划分,此划分正好是集合A上关于R的商集。

  24. 相容关系:设R是定义在集合A上的关系,如果R是自反的、对称的,则称此关系R为A上的相容关系。

  25. 设r是集合A上的相容关系,如C$\subseteq $A,如果对于C中任何两个元素a1和a2都有a1Ra2,称C是由相容关系R产生的相容类

  26. 设R是集合A上的相容关系,不能真包含在任何其他相容类中的相容类,称作最大相容类,记作Cr

  27. 偏序关系:R是A上的二元关系,如果R满足:自反,反对称,传递。则称R是A上的偏序关系,记作 ≤ \leq

  28. 偏序集:集合A连同A上的偏序关系R一起成为一个偏序集,记为<A,R>

  29. 可比:设<A, ≤ \leq >是偏序集,x,y ∈ \in A,若有x ≤ y ∨ y ≤ x \leq y\lor y\leq x yyx则称x与y是可比的

  30. 若xy可比,且 x ≤ y 和 x ≠ y x\leq y和x\ne y xyx=y,但不存在z ∈ \in A,使得 x ≤ z ∧ z ≤ y x\leq z\land z\leq y xzzy,则称y盖住x

  31. 哈斯图的画法:

  32. 设<A, ≤ \leq >是偏序集, B ⊆ A B \subseteq A BA,若B中的每两个元素都有关系,则称B为,若B中的每两个元素都无关,则称B为反链

  33. 全序关系:设<A, ≤ \leq >为偏序集,若A是一个链,则称 ≤ \leq 为A上的全序关系,此时称<A, ≤ \leq >为全序集。也就是集合A中任意的两个元素都有关系。

  34. 良序关系:设<A, ≤ \leq >是一偏序集,若A的任何一个非空子集都有最小元素,则称“ ≤ \leq ”为良序关系,<A, ≤ \leq >是良序集

  35. 良序集是全序集。全序集未必是良序集。有限的全序集是良序集

  36. 函数:设X和Y是任意两个集合,而f是X到Y的一个二元关系,如果对于每一个x ∈ \in X,有唯一的y ∈ \in Y,使得<x,y> ∈ \in f,则称f是从X到Y的一个函数关系(映射),记为f:X → \rightarrow Y。若<x,y> ∈ \in f,通常y记为f(x),称x为自由变元,称y为x在函数f下的

  37. 定义域就是前面出现的元素,值域就是后边出现的元素。

  38. 从A到B的一切函数构成的集合记为 B A B^{A} BA

  39. 函数和关系的差别:函数是一种特殊的关系,它与一般关系比较有如下差别:

    • A × B A\times B A×B的任何一个子集,都是A到B的二元关系,因此,从A到B的不同关系有 2 ∣ A ∣ × ∣ B ∣ 2^{|A|\times|B|} 2A×B个;但是从A到B的不同的函数却仅有 ∣ B ∣ ∣ A ∣ |B|^{|A|} BA
    • 函数的定义域是X,而不能是X的某个真子集
    • 每个函数中的序偶的第一个元素一定是互补相同的
  40. 特殊函数:

    设f是从A到B的函数,若f满足:

    • ranf=B,则称f为从A到B的满射
    • 若对任意x1,x2 ∈ \in A,且x1不等于x2,则f(x1) ≠ \neq =f(x2),则称f为从A到B的单射
    • 若f既是从A到B的满射,又是单射,则称f为从A到B的双射
    • 设f是A到B的双射,则称B → \rightarrow A的双射f c ^{c} c为f的逆函数,记作 f − 1 f^{-1} f1
    • 设函数f:X → \rightarrow Y,g:W → \rightarrow Z,若f(X)$\subseteq W , 则 W,则 W,g\circ f={<x,z>|x\in X\land z\in Z\land (\exist y)(y\in Y \land y=f(x) \land z=g(y))} 称 g 在 f 的 左 边 可 复 合 。 当 函 数 称g在f的左边可复合。当函数 gfg\circ f 作 用 于 X 中 的 任 意 一 个 元 素 x 时 , 可 记 为 作用于X中的任意一个元素x时,可记为 Xxg\circ f(x)=g(f(x))$.
    • 常函数:如果存在是某个y0 ∈ \in Y,对于每个x ∈ \in X都有f(x)=y0,即f(x)={y0}
    • 如果Ix=<x,x>,则称函数为恒等函数
  41. 定理:

    • 另X和Y为有限集,若|X|=|Y|,则f:X → \rightarrow Y是单射的,当且仅当它是一个满射。
    • 设f和g分别是A到B和从B到C的函数,则:
    • 如果f,g是满射,则复合函数 g ∘ f g\circ f gf也是从A到C的满射
    • 如果f,g是单射,则 g ∘ f g\circ f gf也是从A到C单射
    • 如果f,g是双射,则 g ∘ f g\circ f gf也是从A到C的双射
    • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nHEcAQd7-1596607027729)(https://i.loli.net/2020/06/22/1tEUk2bzKxnFYjp.png)]
集合的运算
  • 集合的并:设任意集合A和B,由所有属于集合A或者属于集合B的元素组成的集合S,称为集合A和B的并集记为 A ⋃ B A \bigcup B AB
  • 集合的交:设任意集合A和B,由集合A和B的所有共同元素组成的集合称为A和B的交集,记为 A ⋂ B A \bigcap B AB
  • 绝对补(补运算):设全集是E,对集合A,E-A是集合A的绝对补。记为~A或者 A ‾ \overline{A} A
  • 集合的补(差集):设任意集合A和B,所有属于集合A而不属于集合B的一切元素组成的集合S,称为集合B对于A的补集或者相对补,记为A-B
  • 集合的对称差:设任意集合A和B,A和B的对称差集为集合S,其元素属于A或者属于B,但不能既属于A又属于B。记为A ⨁ \bigoplus B
集合的运算性质及定律

幂 等 律 : A ∪ A = A A ∩ A = A 交 换 律 : A ∪ B = B ∪ A A ∩ B = B ∩ A 结 合 律 : A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C 同 一 律 : A ∪ ∅ = A A ∩ E ( 全 集 ) = A 零 律 : A ∪ E = E A ∩ ∅ = ∅ 分 配 律 : A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) 吸 收 律 : A ∪ ( A ∩ B ) = A A ∩ ( A ∪ B ) = A 矛 盾 律 , 排 中 律 : A ‾ ∩ A = ∅ A ‾ ∪ A = E 双 重 否 定 率 : A ‾ ‾ = A 德 摩 根 律 : A ∪ B ‾ = A ‾ ∩ B ‾ A ∩ B ‾ = A ‾ ∩ B ‾ 幂等律:\\ A \cup A=A\\ A \cap A=A\\ 交换律:\\ A \cup B=B \cup A\\ A \cap B =B \cap A\\ 结合律:\\ A \cup (B \cup C)=(A \cup B)\cup C\\ A \cap (B \cap C)=(A \cap B)\cap C\\ 同一律:\\ A \cup \emptyset =A\\ A \cap E(全集)=A\\ 零律:\\ A \cup E=E\\ A \cap \emptyset =\emptyset \\ 分配律: A \cup (B \cap C)=(A \cup B)\cap (A \cup C)\\ A \cap (B \cup C)=(A \cap B)\cup (A \cap C)\\ 吸收律:\\ A \cup (A \cap B)=A\\ A \cap (A \cup B)=A\\ 矛盾律,排中律:\\ \overline{A}\cap A=\emptyset\\ \overline{A}\cup A=E\\ 双重否定率:\\ \overline{\overline{A}}=A\\ 德摩根律:\\ \overline{A \cup B}=\overline{A}\cap \overline{B}\\ \overline{A \cap B}=\overline{A}\cap \overline{B} AA=AAA=AAB=BAAB=BAA(BC)=(AB)CA(BC)=(AB)CA=AAE=AAE=EA=A(BC)=(AB)(AC)A(BC)=(AB)(AC)A(AB)=AA(AB)=AAA=AA=EA=AAB=ABAB=AB

笛卡尔积的性质
  • A$\times\emptyset =\emptyset 且 且 \emptyset \times A=\emptyset $

  • 不适合交换律

  • 不适合结合律

  • 对并和交运算满足分配律

  • 设A,B,C,D是非空集合,则有 A ⊆ C ⋀ B ⊆ D ↔ A × B ⊆ C × D A \subseteq C \bigwedge B \subseteq D\leftrightarrow A\times B \subseteq C\times D ACBDA×BC×D

  • 若C非空,则 A ⊆ B ↔ A × C ⊆ B × C ↔ C × A ⊆ C × B A \subseteq B\leftrightarrow A\times C \subseteq B\times C \leftrightarrow C\times A \subseteq C\times B ABA×CB×CC×AC×B

关系的表示
  • 集合表示法:枚举法和叙述法

  • 关系图法:

    如R是定义在A=<a1,a2,a3,…,an>上的关系,则对应于关系R有如下规定:

    • 设a1,a2,…,an为图中节点,用“。”表示。

    • 如< a i , a j a_{i},a_{j} ai,aj> ∈ \in R,则从 a i a_{i} ai a j a_{j} aj可用一有向边 a i → a j a_{i}\rightarrow a_{j} aiaj相连。

    • 如<ai,ai> ∈ \in R,则从ai到ai用一带箭头的小圆环表示。

  • 关系矩阵法: 设A=<a1,a2,a3,…,an>,B=<b1,b2,b3,…,bm>,R是从A到B的一个二元关系,则对应于关系R之关系矩阵MR=(rij)n×m。

    • 布尔矩阵的并运算,记为AKaTeX parse error: Undefined control sequence: \or at position 1: \̲o̲r̲B=C=c(ij)

      如果aij=1或bij=1,则cij=1

    • 交运算:记为A ∧ \land B=C=cij

      如果aij=1且bij=1,则cij=1

    • 积运算:A是m*p矩阵,B是p*n 矩阵.

    • cij=1(存在k,aik=1 and bkj=1)

关系的基本运算
  • 设R,S都是集合A到B的两个关系,则:

R ∪ S = < x , y > ∣ ( x R y ) ∨ ( x S y ) R ∩ S = < x , y > ∣ ( x R y ) ∧ ( s S y ) R − S = < x , y > ∣ ( x R y ) ∧ ( x S y ) 根 据 定 义 , 由 于 A × B 是 相 对 于 R 的 全 集 , 所 以 R ‾ = A × B − R , 且 R ‾ ∪ R = A × B , R ‾ ∪ R = ∅ R \cup S={<x,y>|(xRy)\vee(xSy) }\\ R \cap S={<x,y>|(xRy)\land (sSy)}\\ R -S={<x,y>|(xRy)\land (xSy)}\\ 根据定义,由于A\times B是相对于R的全集,所以\\ \overline{R}=A\times B-R,且\overline{R}\cup R=A\times B,\overline{R}\cup R=\emptyset RS=<x,y>(xRy)(xSy)RS=<x,y>(xRy)(sSy)RS=<x,y>(xRy)(xSy)A×BRR=A×BR,RR=A×B,RR=

  • 关系的复合:设R是一个从集合X到集合Y的二元关系,S是从集合Y到集合Z的二元关系,则RS的复合关系R ∘ \circ S是从X到Z的关系,并且: R ∘ S = < x , y > ∣ ( x ∈ X ) ∧ ( z ∈ Z ) ∧ ( ∃ y ) ( ( y ∈ Y ) ∧ ( x R y ) ∧ ( y S z ) ) R\circ S={<x,y>|(x \in X)\land (z \in Z)\land (\exist y)((y \in Y)\land (xRy)\land (ySz))} RS=<x,y>(xX)(zZ)(y)((yY)(xRy)(ySz))运算称为复合运算。

  • 关系的幂:设R是集合A上的二元关系,则可定义 R n R^{n} Rn如下:
    • R 0 = I A = < a , a > ∣ a ∈ A R^{0}=I_{A}={<a,a>|a \in A} R0=IA=<a,a>aA
    • R = R R=R R=R
    • R n + 1 = R n ∘ R = R ∘ R n R^{n+1}=R^{n}\circ R=R\circ R^{n} Rn+1=RnR=RRn
  • 逆关系:设R是一个从集合X到集合Y的二元关系,则从Y到X的关系 R c = < b , a > ∣ < a , b > ∈ R R^{c}={<b,a>|<a,b>\in R} Rc=<b,a><a,b>R称为R的逆关系,运算“c”称为逆运算
  • ( R ∘ S ) ∘ T = R ∘ ( S ∘ T ) (R\circ S)\circ T=R\circ(S\circ T) (RS)T=R(ST)
  • ( R ∘ S ) c = S c ∘ R c (R\circ S)^{c}=S^{c}\circ R^{c} (RS)c=ScRc
关系的性质
  1. 设R是集合X上的二元关系:

    • 对任意的x ∈ \in X,

      • 都满足<x,x> ∈ \in R,则R是自反的。

      • 都满足<x,x> ∉ R \not\in R R是反自反的。

        对任意的x,y ∈ \in X

      • 满足<x,y> ∈ \in R,则有<y,x> ∈ \in R,则R是对称的。

      • 满足 < x , y > ∈ R ∧ < y , x > ∈ R → x = y <x,y>\in R\land<y,x>\in R\rightarrow x=y <x,y>R<y,x>Rx=y则R是反对称的。

        对任意的x,y,z ∈ \in X

      • 满足<x,y> ∈ \in R ∧ \land <y,z> ∈ \in R → \rightarrow <x,z> ∈ \in R,则R是传递的

  2. 用关系图来描述关系的性质

    • 在关系图中,每个节点都有环,则此关系是自反的。
    • 在关系图中,每个节点是无环的,则此关系是反自反的。
    • 在关系图中,任何一个节点之间,要么有方向相反的两条边,要么没有任何边,则此关系是对称的
    • 在关系图中,任何一对节点之间,至多有一条边存在。则此关系是反对称的
    • 在关系图中,任何三个节点,x,y,z之间,若从x到y有一条边存在,从y到z有一条边存在,则从x到z一定有一条边存在,则此关系是传递的
  3. 用关系矩阵来描述关系的性质

    • 在关系矩阵中,对角线上全是1,则此关系是自反的
    • 在关系矩阵中,对角线上全是0,则此关系是反自反的。
    • 若R之关系矩阵是对称矩阵,则此关系是对称的
    • 若关系矩阵是反对称矩阵(关于元素1的反对称),则此关系是反对称的
    • 在关系矩阵中,对任意i,j,k ∈ \in {1,2,3,…,n},满足如 r i j = 1 ∧ r j k = 1 r_{ij}=1\land r_{jk}=1 rij=1rjk=1 r i k = 1 r_{ik}=1 rik=1,则此关系是传递的
  4. 关于关系性质的一些结论

  5. 关系性质的逻辑表示

  6. 关系性质的证明方法

闭包的计算方法

特殊元素
  1. 设<A, ≤ \leq >是偏序集,B是A的任何一个子集。

    • 若存在元素b$\in B , 使 得 对 任 意 x B,使得对任意x B,使x\in B , 都 有 x B,都有x B,x\leq$b,则称b为B的最大元素。
    • 若有元素b ∈ \in B,使得对任意x ∈ \in B都有b ≤ \leq x,则称b为B的最小元素
    • 若存在元素b ∈ \in B,使得对任何x ∈ \in B满足 b ≤ x → x = b b\leq x\rightarrow x=b bxx=b,则称b为B的极大元素
    • 若存在元素b ∈ \in B,使得对任何x ∈ \in B,满足 x ≤ b → x = b x\leq b\rightarrow x=b xbx=b,则称b为B的极小元素
    • 若存在元素a ∈ \in A,使得对任何x ∈ \in B,都有x ≤ \leq B,都有 x ≤ a x\leq a xa,则称a为B的上界
    • 若有是元素a ∈ \in A,使得对任何x ∈ \in B,都有a ≤ \leq x,则称a为B的下界
    • 若元素a’ ∈ \in A是B的上界,元素a ∈ \in A是B的任何一个上界,若均有a’ ≤ \leq a,则称a’为B的上确届。
    • 若元素a’ ∈ \in A是B的下界,元素a ∈ \in A是B的任何一个下界,若均有a ≤ \leq a’,则称a’为B的下确界。
  2. 特殊元素的一些结论:

    1. B的最大元、最小元、极大元和极小元如果存在是,一定在B中。

    2. b是B的最大元 ↔ \leftrightarrow B中所有的元素都比b小。

      b是B的最小元 ↔ \leftrightarrow B中所有的元素都比b大

      b是B的极大元 ↔ \leftrightarrow B中没有比b大的元素

      b是B的极小元 ↔ \leftrightarrow B中没有比b小的元素

    3. 子集B的上下界和上下确界可在集合A中寻找

    4. 子集B的上下界不一定存在,如果存在可能多个

    5. 子集B的上下确界不一定存在,如果存在一定唯一

    6. 子集B有上下确界就一定有上下界,反之不成立

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jian圣楠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值