行列式基础

进阶篇:(努力更新中)


二阶行列式

我们先来看看二元一次方程。

{ a 1 , 1 x 1 + a 1 , 2 x 2 = b 1 a 2 , 1 x 2 + a 2 , 2 x 2 = b 2 \left\{ \begin{matrix} a_{_{1,1}} x_{_1} + a_{_{1,2}} x_{_2} = b_{_1} \\ \\ a_{_{2,1}} x_{_2} + a_{_{2,2}} x_{_2} = b_{_2} \end{matrix} \right. a1,1x1+a1,2x2=b1a2,1x2+a2,2x2=b2

如果我们对他求一个通解,就可以求出来

{ x 1 = b 1 a 2 , 2 − a 1 , 2 b 2 a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 x 2 = a 1 , 1 b 2 − b 1 a 2 , 1 a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 \left\{ \begin{matrix} x_{_1} = \dfrac{ b_{_1} a_{_{2,2}} - a_{_{1,2}}b_{_2} }{ a_{_{1,1}} a_{_{2,2}} - a_{_{1,2}} a_{_{2,1}} } \\\\ x_{_2} = \dfrac{ a_{_{1,1}} b_{_2} - b_{_1}a_{_{2,1}} }{ a_{_{1,1}} a_{_{2,2}} - a_{_{1,2}} a_{_{2,1}} } \end{matrix} \right. x1=a1,1a2,2a1,2a2,1b1a2,2a1,2b2x2=a1,1a2,2a1,2a2,1a1,1b2b1a2,1

我们可以发现两个通解的分母相同,于是我们引进一个新的符号来表示,也就是二阶行列式,表示如下:

D = ∣ a 1 , 1 a 1 , 2 a 2 , 1 a 2 , 2 ∣ = a 1 , 1 a 2 , 2 − a 1 , 2 a 2 , 1 D= \begin{vmatrix} a_{_{1,1}} & a_{_{1,2}} \\ a_{_{2,1}} & a_{_{2,2}} \end{vmatrix} = a_{_{1,1}} a_{_{2,2}} - a_{_{1,2}} a_{_{2,1}} D=a1,1a2,1a1,2a2,2=a1,1a2,2a1,2a2,1

其中的数就称为元素。

我们可以很清晰的看出它的运算方法就是对角线相乘再相减,这就是二阶行列式的对角线法则

三阶行列式

我们一样来看一个三元一次方程:

{ a 1 , 1 x 1 + a 1 , 2 x 2 + a 1 , 3 x 3 = b 1 a 2 , 1 x 2 + a 2 , 2 x 2 + a 2 , 3 x 3 = b 2 a 3 , 1 x 1 + a 3 , 2 x 2 + a 3 , 3 x 3 = b 3 \left\{ \begin{matrix} a_{_{1,1}} x_{_1} + a_{_{1,2}} x_{_2} + a_{_{1,3}} x_{_3} = b_{_1} \\\\ a_{_{2,1}} x_{_2} + a_{_{2,2}} x_{_2} + a_{_{2,3}} x_{_3} = b_{_2} \\\\ a_{_{3,1}} x_{_1} + a_{_{3,2}} x_{_2} + a_{_{3,3}} x_{_3} = b_{_3} \end{matrix} \right. a1,1x1+a1,2x2+a1,3x3=b1a2,1x2+a2,2x2+a2,3x3=b2a3,1x1+a3,2x2+a3,3x3=b3

同样转化为行列式,只不过是三阶。

D = ∣ a 1 , 1 a 1 , 2 a 1 , 3 a 2 , 1 a 2 , 2 a 2 , 3 a 3 , 1 a 3 , 2 a 3 , 3 ∣ D= \begin{vmatrix} a_{_{1,1}} & a_{_{1,2}} & a_{_{1,3}} \\ a_{_{2,1}} & a_{_{2,2}} & a_{_{2,3}} \\ a_{_{3,1}} & a_{_{3,2}} & a_{_{3,3}} \end{vmatrix} D=a1,1a2,1a3,1a1,2a2,2a3,2a1,3a2,3a3,3

如果按照我们二阶的对角线法则,好像有点不大对,发现和通解的分母不大一样,于是我们继续观察。

通解的分母为:

a 1 , 1 a 2 , 2 a 3 , 3 + a 1 , 2 a 2 , 3 a 3 , 1 + a 1 , 3 a 2 , 1 a 3 , 2 − a 1 , 3 a 2 , 2 a 3 , 1 − a 1 , 2 a 2 , 1 a 3 , 3 − a 1 , 1 a 2 , 3 a 3 , 2 a_{_{1,1}}a_{_{2,2}}a_{_{3,3}} + a_{_{1,2}}a_{_{2,3}}a_{_{3,1}} + a_{_{1,3}}a_{_{2,1}}a_{_{3,2}}- a_{_{1,3}}a_{_{2,2}}a_{_{3,1}} - a_{_{1,2}}a_{_{2,1}}a_{_{3,3}} - a_{_{1,1}}a_{_{2,3}}a_{_{3,2}} a1,1a2,2a3,3+a1,2a2,3a3,1+a1,3a2,1a3,2a1,3a2,2a3,1a1,2a2,1a3,3a1,1a2,3a3,2

如果把他们在复制一遍,就会发现一个神奇的规律。

在这里插入图片描述
如上图,红色的就是符号为正的项,蓝色的就是符号为负的项。

你会发现他们似乎还是满足对角线法则。(只不过多了几条对角线)

但是!!!

只有二阶行列式三阶行列式满足对角线法则。(一定不要以为所有的行列式都满足!!!)

一般行列式

我们来看看三阶行列式的值。

a 1 , 1 a 2 , 2 a 3 , 3 + a 1 , 2 a 2 , 3 a 3 , 1 + a 1 , 3 a 2 , 1 a 3 , 2 − a 1 , 3 a 2 , 2 a 3 , 1 − a 1 , 2 a 2 , 1 a 3 , 3 − a 1 , 1 a 2 , 3 a 3 , 2 a_{_{1,1}}a_{_{2,2}}a_{_{3,3}} + a_{_{1,2}}a_{_{2,3}}a_{_{3,1}} + a_{_{1,3}}a_{_{2,1}}a_{_{3,2}}- a_{_{1,3}}a_{_{2,2}}a_{_{3,1}} - a_{_{1,2}}a_{_{2,1}}a_{_{3,3}} - a_{_{1,1}}a_{_{2,3}}a_{_{3,2}} a1,1a2,2a3,3+a1,2a2,3a3,1+a1,3a2,1a3,2a1,3a2,2a3,1a1,2a2,1a3,3a1,1a2,3a3,2

我们发现,在行号排好序的情况下,列号就是 1 1 1 3 3 3 的全排列。

并且它这一项的符号跟列号的逆序对的个数有关。

如果逆序对的个数为奇,则符号为负,如果逆序对的个数为偶,则符号为正。

于是我们可以得出一般行列式的定义,那就是:

D n = ∣ a 1 , 1 a 1 , 2 ⋯ a 1 , n a 2 , 1 a 2 , 2 ⋯ a 2 , n ⋮ ⋮ ⋱ ⋮ a n , 1 a n , 2 ⋯ a n , n ∣ = ∑ p 1 p 2 ⋯   p n ( − 1 ) t ( p 1 p 2 ⋯   p n ) a 1 , P 1 a 2 , P 2 ⋯   a n , P n D_{_n}= \begin{vmatrix} a_{_{1,1}} & a_{_{1,2}} & \cdots & a_{_{1,n}} \\ a_{_{2,1}} & a_{_{2,2}} & \cdots & a_{_{2,n}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{_{n,1}} & a_{_{n,2}} & \cdots & a_{_{n,n}} \end{vmatrix} =\sum_{p_{_1}p_{_2}\cdots\ p_{_n}} (-1)^{t(p_{_1}p_{_2}\cdots\ p_{_n})}a_{_{1,P_{_1}}}a_{_{2,P_{_2}}}\cdots \ a_{_{n,P_{_n}}} Dn=a1,1a2,1an,1a1,2a2,2an,2a1,na2,nan,n=p1p2 pn(1)t(p1p2 pn)a1,P1a2,P2 an,Pn

其中 p p p n n n 的全排列, t ( p 1 p 2 ⋯   p n ) {t(p_{_1}p_{_2}\cdots\ p_{_n})} t(p1p2 pn) p p p 的逆序对。

对换

对于一个 n n n 的排列,如果交换两个相邻元素,则会更改当前排列的逆序对的奇偶性。

这种交换相邻两个元素的操作叫做相邻对换

所以我们来看看两个不相邻的元素对换对排列的逆序对的奇偶性的影响。

对于下面的数组,我们假设就换第 i i i 位和第 j j j 位。

a 1 , a 2 ⋯   a i , a i + 1 ⋯   a j − 1 , a j , a j + 1 ⋯   a n a_{_1} ,a_{_2}\cdots\ a_{_i}, a_{_{i + 1}}\cdots\ a_{_{j - 1}}, a_{_j}, a_{_{j + 1}}\cdots\ a_{_n} a1,a2 ai,ai+1 aj1,aj,aj+1 an

我们首先将 a j a_{_j} aj 换到 a i + 1 a_{_{i + 1}} ai+1 的位置,此时一共做了 j − i − 1 j - i - 1 ji1 次相邻对换,交换后的数组如下。

a 1 , a 2 ⋯   a i , a j , a i + 1 ⋯   a j − 1 , a j + 1 ⋯   a n a_{_1}, a_{_2}\cdots\ a_{_i}, a_{_j}, a_{_{i + 1}}\cdots\ a_{_{j - 1}}, a_{_{j + 1}}\cdots\ a_{_n} a1,a2 ai,aj,ai+1 aj1,aj+1 an

我们再将 a i a_{_i} ai 换到 a j − 1 a_{_{j - 1}} aj1 的后面,此时做了 j − i j - i ji 次相邻对换,交换后的数组如下。

a 1 , a 2 ⋯   a j , a i + 1 ⋯   a j − 1 , a i , a j + 1 ⋯   a n a_{_1}, a_{_2}\cdots\ a_{_j}, a_{_{i + 1}}\cdots\ a_{_{j - 1}}, a_{_i}, a_{_{j + 1}}\cdots\ a_{_n} a1,a2 aj,ai+1 aj1,ai,aj+1 an

这时候交换就完毕了,我们一共做了 2 ∗ ( i − j ) − 1 2*(i - j) - 1 2(ij)1 次相邻对换,也就是做了奇数次相邻对换。

因为每一次相邻对换都会改变一次奇偶性,所以做奇数次相邻对换也就相当于改变一次奇偶性。

所以我们可以得出结论,任意交换两个元素都会改变排列的奇偶性。

行列式的对换

我们刚才讨论了排列的对换,我们现在来看看行列式的对换。

首先我们知道,乘法是可以交换位置而不改变当前结果的,于是我们就有:

a i 1 , j 1 a i 2 , j 2 ⋯   a i n , j n = a 1 , p 1 a 2 , p 2 ⋯   a n , p n = a p 1 , 1 a p 2 , 2 ⋯   a p n , n a_{_{i_{_1},j_{_1}}} a_{_{i_{_2},j_{_2}}} \cdots\ a_{_{i_{_n},j_{_n}}} = a_{_{1,p_{_1}}}a_{_{2,p_{_2}}}\cdots\ a_{_{n,p_{_n}}} = a_{_{p_{_1}, 1}}a_{_{p_{_2}, 2}}\cdots\ a_{_{p_{_n}, n}} ai1,j1ai2,j2 ain,jn=a1,p1a2,p2 an,pn=ap1,1ap2,2 apn,n

因为只对换一行或一列都会改变一次行或列的逆序对的奇偶性,所以对换一次改变两次行和列的奇偶性,也就相当于没改变,所以:

( − 1 ) t ( i 1 , i 2 ⋯   i n ) + t ( j 1 , j 2 ⋯   j n ) = ( − 1 ) t ( 1 , 2 ⋯   n ) + t ( p 1 , p 2 ⋯   p n ) = ( − 1 ) t ( p 1 , p 2 ⋯   p n ) (-1)^{t(i_{_1},i_{_2}\cdots\ i_{_n}) + t(j_{_1},j_{_2}\cdots\ j_{_n})} = (-1)^{t(1, 2\cdots\ n) + t(p_{_1},p_{_2}\cdots\ p_{_n})} = (-1)^{t(p_{_1},p_{_2}\cdots\ p_{_n})} (1)t(i1,i2 in)+t(j1,j2 jn)=(1)t(1,2 n)+t(p1,p2 pn)=(1)t(p1,p2 pn)

所以 n n n 阶行列式也可以表示为:

D = ∑ p 1 p 2 ⋯   p n ( − 1 ) t ( p 1 p 2 ⋯   p n ) a 1 , P 1 a 2 , P 2 ⋯   a n , P n = ∑ p 1 p 2 ⋯   p n ( − 1 ) t ( p 1 p 2 ⋯   p n ) a P 1 , 1 a P 2 , 2 ⋯   a P n , n = ∑ p 1 p 2 ⋯   p n ( − 1 ) t ( i 1 , i 2 ⋯   i n ) + t ( j 1 , j 2 ⋯   j n ) a i 1 , j 1 a i 2 , j 2 ⋯   a i n , j n D = \sum_{p_{_1}p_{_2}\cdots\ p_{_n}} (-1)^{t(p_{_1}p_{_2}\cdots\ p_{_n})}a_{_{1,P_{_1}}}a_{_{2,P_{_2}}}\cdots \ a_{_{n,P_{_n}}} \newline =\sum_{p_{_1}p_{_2}\cdots\ p_{_n}} (-1)^{t(p_{_1}p_{_2}\cdots\ p_{_n})}a_{_{P_{_1},1}}a_{_{P_{_2},2}}\cdots \ a_{_{P_{_n},n}} \newline =\sum_{p_{_1}p_{_2}\cdots\ p_{_n}} (-1)^{t(i_{_1},i_{_2}\cdots\ i_{_n}) + t(j_{_1},j_{_2}\cdots\ j_{_n})}a_{_{i_{_1},j_{_1}}} a_{_{i_{_2},j_{_2}}} \cdots\ a_{_{i_{_n},j_{_n}}} D=p1p2 pn(1)t(p1p2 pn)a1,P1a2,P2 an,Pn=p1p2 pn(1)t(p1p2 pn)aP1,1aP2,2 aPn,n=p1p2 pn(1)t(i1,i2 in)+t(j1,j2 jn)ai1,j1ai2,j2 ain,jn

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值