题目大意
有 n n n 个变量 w 1 ⋯ w n w_1\cdots w_n w1⋯wn,每个变量可以取 W W W 或 − W -W −W。
有 p p p 个式子,形如 H i = a i ⋅ ∣ w x i − w y i ∣ + b i ⋅ ∣ w y i − w z i ∣ + c i ⋅ ∣ w z i − w x i ∣ + d i ⋅ ( w x i − w y i ) + e i ⋅ ( w y i − w z i ) + f i ⋅ ( w z i − w x i ) H_i=a_i\cdot|w_{x_i}-w_{y_i}|+b_i\cdot|w_{y_i}-w_{z_i}|+c_i\cdot|w_{z_i}-w_{x_i}|+d_i\cdot(w_{x_i}-w_{y_i})+e_i\cdot(w_{y_i}-w_{z_i})+f_i\cdot(w_{z_i}-w_{x_i}) Hi=ai⋅∣wxi−wyi∣+bi⋅∣wyi−wzi∣+ci⋅∣wzi−wxi∣+di⋅(wxi−wyi)+ei⋅(wyi−wzi)+fi⋅(wzi−wxi)。
有 q q q 个条件,形如 w x ≤ w y w_x\leq w_y wx≤wy 或 w x = w y w_x=w_y wx=wy 或 w x < w y w_x<w_y wx<wy。
最小化 ∑ w i + ∑ H i \sum w_i+\sum H_i ∑wi+∑Hi。
思路
最小割,建图有点难搞。
首先我们可以把所有的 W W W 系数都搞出来,算出答案再乘回去。
考虑如何建图。
首先每个点向 S S S 和 T T T 连边,连向 S S S 代表该变量取正,连向 Y Y Y 代表该变量取负。
然后对于每一个 a ⋅ ∣ w x − w y ∣ a\cdot |w_x - w_y| a⋅∣wx−wy∣ 在 x x x 和 y y y 之间连一条权值为 2 ⋅ a 2\cdot a 2⋅a 的无向边。(也就是两条有向边)
然后把没绝对值的拆开,对于每个点看看所有加起来的值得正负再连 S S S 或 T T T。
对于每一个限制按一下方法连边:
- 对于 w x < w y w_x < w_y wx<wy,此时可以确定 w x w_x wx 的值为负, w y w_y wy 的值为正,也就是连一条 x x x 到 y y y 权值为无限的单向边。
- 对于 w x = w y w_x = w_y wx=wy,就将 x x x 和 y y y 之间连一条权值为无限的无向边。
- 对于 w x ≤ w y w_x \leq w_y wx≤wy,连一条 x x x 到 T T T 权值为无限的单向边,一条 y y y 到 S S S 权值为无限的单向边。
最后跑一遍最小割就可以了。
Tips:如果遇到最小割中有负边,可以采取两种方法解决,一种是改变一下建图的方法,一种是将所有的边都加上一个值,最后在全部减掉(这种方法要确定一共会有几条最小割割到的边)。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL INF = 1e15;
int Q, n, W, p, q, a[1005], last[1005], Ecnt, d[1005], vd[1005], S, T;
LL ans, val[1005];
struct Edge { int to, next; LL val; } E[100005];
void addedge(int u, int v, LL val) { Ecnt++, E[Ecnt].next = last[u], last[u] = Ecnt, E[Ecnt].val = val, E[Ecnt].to = v; }
LL aug(int x, LL augco) {
if (x == T)
return augco;
LL augc = augco, delta;
int mind = T;
for (int xy = last[x]; xy; xy = E[xy].next)
if (E[xy].val) {
if (d[x] == d[E[xy].to] + 1) {
delta = aug(E[xy].to, min(E[xy].val, augc));
E[xy].val -= delta, E[xy ^ 1].val += delta, augc -= delta;
if (d[S] >= T)
return augco - augc;
if (augc == 0)
break;
}
mind = min(mind, d[E[xy].to]);
}
if (augc == augco) {
vd[d[x]]--;
if (vd[d[x]] == 0)
d[S] = T;
d[x] = mind + 1, vd[d[x]]++;
}
return augco - augc;
}
void sap() {
memset(d, 0, sizeof(d)), memset(vd, 0, sizeof(vd));
vd[0] = n + 2;
while (d[S] < T)
ans = ans + aug(S, INF);
}
int main() {
scanf("%d", &Q);
while (Q--) {
scanf("%d%d%d%d", &n, &W, &p, &q), Ecnt = 1, ans = 0, S = n + 1, T = n + 2;
for (int i = 1; i <= n + 2; i++)
last[i] = val[i] = 0;
for (int i = 1; i <= p; i++) {
LL x, y, z, a, b, c, d, e, f;
scanf("%lld%lld%lld%lld%lld%lld%lld%lld%lld", &x, &y, &z, &a, &b, &c, &d, &e, &f);
addedge(x, y, a * 2), addedge(y, x, a * 2);
addedge(z, y, b * 2), addedge(y, z, b * 2);
addedge(x, z, c * 2), addedge(z, x, c * 2);
val[x] += d - f, val[y] += e - d, val[z] += f - e;
}
for (int i = 1; i <= n; i++)
val[i]++;
for (int i = 1; i <= n; i++)
if (val[i] > 0)
ans = ans - val[i], addedge(i, n + 2, val[i] * 2), addedge(n + 2, i, 0);
else if (val[i] < 0)
ans = ans + val[i], addedge(n + 1, i, -val[i] * 2), addedge(i, n + 1, 0);
for (int i = 1, x, y, t; i <= q; i++) {
scanf("%d%d%d", &x, &y, &t);
if (t == 0)
addedge(x, y, INF), addedge(y, x, 0);
else if (t == 1)
addedge(x, y, INF), addedge(y, x, INF);
else
addedge(x, n + 2, INF), addedge(n + 2, x, 0), addedge(n + 1, y, INF), addedge(y, n + 1, 0);
}
sap();
printf("%lld\n", ans * W);
}
return 0;
}