from typing import Dict, Tuple, List, Optional

写在篇前

typing 是python3.5中开始新增的专用于类型注解(type hints)的模块,为python程序提供静态类型检查,如下面的greeting函数规定了参数name的类型是str,返回值的类型也是str。

def greeting(name: str) -> str:
    return 'Hello ' + name

在实践中,该模块常用的类型有 Any, Union, Tuple, Callable, TypeVar,Optional和Generic等,本篇博客主要依据 官方文档 以及日常使用经验来探讨一下typing模块的使用方法以及经验。

typing

下面我们再来详细看下 typing 模块的具体用法,这里主要会介绍一些常用的注解类型,如 List、Tuple、Dict、Sequence 等等,了解了每个类型的具体使用方法,我们可以得心应手的对任何变量进行声明了。 在引入的时候就直接通过 typing 模块引入就好了,例如:

from typing import List, Tuple

List

List、列表,是 list 的泛型,基本等同于 list,其后紧跟一个方括号,里面代表了构成这个列表的元素类型,如由数字构成的列表可以声明为:

var: List[int or float] = [2, 3.5]

另外还可以嵌套声明都是可以的:

var: List[List[int]] = [[1, 2], [2, 3]]

Tuple、NamedTuple

Tuple、元组,是 tuple 的泛型,其后紧跟一个方括号,方括号中按照顺序声明了构成本元组的元素类型,如 Tuple[X, Y] 代表了构成元组的第一个元素是 X 类型,第二个元素是 Y 类型。 比如想声明一个元组,分别代表姓名、年龄、身高,三个数据类型分别为 str、int、float,那么可以这么声明:

person: Tuple[str, int, float] = ('Mike', 22, 1.75)

同样地也可以使用类型嵌套。 NamedTuple,是 collections.namedtuple 的泛型,实际上就和 namedtuple 用法完全一致,但个人其实并不推荐使用 NamedTuple,推荐使用 attrs 这个库来声明一些具有表征意义的类。

Dict、Mapping、MutableMapping

Dict、字典,是 dict 的泛型;Mapping,映射,是 collections.abc.Mapping 的泛型。根据官方文档,Dict 推荐用于注解返回类型,Mapping 推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型,如:

def size(rect: Mapping[str, int]) -> Dict[str, int]:
    return {'width': rect['width'] + 100, 'height': rect['width'] + 100}

这里将 Dict 用作了返回值类型注解,将 Mapping 用作了参数类型注解。 MutableMapping 则是 Mapping 对象的子类,在很多库中也经常用 MutableMapping 来代替 Mapping。

Set、AbstractSet

Set、集合,是 set 的泛型;AbstractSet、是 collections.abc.Set 的泛型。根据官方文档,Set 推荐用于注解返回类型,AbstractSet 用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型,如:

def describe(s: AbstractSet[int]) -> Set[int]:
    return set(s)

这里将 Set 用作了返回值类型注解,将 AbstractSet 用作了参数类型注解。

Sequence

Sequence,是 collections.abc.Sequence 的泛型,在某些情况下,我们可能并不需要严格区分一个变量或参数到底是列表 list 类型还是元组 tuple 类型,我们可以使用一个更为泛化的类型,叫做 Sequence,其用法类似于 List,如:

def square(elements: Sequence[float]) -> List[float]:
    return [x ** 2 for x in elements]

Callable

Callable,可调用类型,它通常用来注解一个方法,回调函数可以使用类似Callable[[Arg1Type, Arg2Type],ReturnType]的类型注释,这个比较简单,例子如下,如果只指定回调函数的返回值类型,则可以使用Callable[…, ReturnType]的形式:

print(Callable, type(add), isinstance(add, Callable))

运行结果:

typing.Callable <class 'function'> True

在这里虽然二者 add 利用 type 方法得到的结果是 function,但实际上利用 isinstance 方法判断确实是 True。 Callable 在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, …], ReturnType] 这样的类型注解,将参数类型和返回值类型都要注解出来,例如:

def date(year: int, month: int, day: int) -> str:
    return f'{year}-{month}-{day}'

def get_date_fn() -> Callable[[int, int, int], str]:
    return date

这里首先声明了一个方法 date,接收三个 int 参数,返回一个 str 结果,get_date_fn 方法返回了这个方法本身,它的返回值类型就可以标记为 Callable,中括号内分别标记了返回的方法的参数类型和返回值类型。

Union

Union,联合类型,Union[X, Y] 代表要么是 X 类型,要么是 Y 类型。 联合类型的联合类型等价于展平后的类型:

Union[Union[int, str], float] == Union[int, str, float]

仅有一个参数的联合类型会坍缩成参数自身,比如:

Union[int] == int

多余的参数会被跳过,比如:

Union[int, str, int] == Union[int, str]

在比较联合类型的时候,参数顺序会被忽略,比如:

Union[int, str] == Union[str, int]

这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:

def process(fn: Union[str, Callable]):
    if isinstance(fn, str):
        # str2fn and process
        pass
    elif isinstance(fn, Callable):
        fn()

这样的声明在一些类库方法定义的时候十分常见。

Optional

Optional,可选类型, Optional[X] 等价于 X | None (或 Union[X, None] )。 意思是说这个参数可以为空或已经声明的类型。

但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为 None。

如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:

def judge(result: bool) -> Optional[str]:
    if result: return 'Error Occurred'

Optional例子

#Optional
from typing import Optional

def foo_v2(a: int, b: Optional[int] = None):
    if b:
        print(a + b)
    else:
        print("parameter b is a NoneType!")

#只传入a位置的实参
foo_v2(2)

# 输出
>>> parameter b is a NoneType!

案例实战

官网给了另外一个例子,非常生动形象:

from typing import Dict, Tuple, Sequence

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: Sequence[Server]) -> None:
    pass

def broadcast_message2(
        message: str,
        servers: Sequence[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
    pass

毫无疑问,函数broadcast_message2的注解明显比broadcast_message更加简洁清晰。

接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。 这里我们看的库是 requests-html,是由 Kenneth Reitz 所开发的,其 GitHub 地址为:https://github.com/psf/requests-html,下面我们主要看看它的源代码中一些类型是如何声明的。 这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些 typing 的定义和方法定义。 首先 Typing 的定义部分如下:

from typing import Set, Union, List, MutableMapping, Optional

_Find = Union[List['Element'], 'Element']
_XPath = Union[List[str], List['Element'], str, 'Element']
_Result = Union[List['Result'], 'Result']
_HTML = Union[str, bytes]
_BaseHTML = str
_UserAgent = str
_DefaultEncoding = str
_URL = str
_RawHTML = bytes
_Encoding = str
_LXML = HtmlElement
_Text = str
_Search = Result
_Containing = Union[str, List[str]]
_Links = Set[str]
_Attrs = MutableMapping
_Next = Union['HTML', List[str]]
_NextSymbol = List[str]

这里可以看到主要用到的类型有 Set、Union、List、MutableMapping、Optional,这些在上文都已经做了解释,另外这里使用了多次 Union 来声明了一些新的类型,如 _Find 则要么是是 Element 对象的列表,要么是单个 Element 对象,_Result 则要么是 Result 对象的列表,要么是单个 Result 对象。另外 _Attrs 其实就是字典类型,这里用 MutableMapping 来表示了,没有用 Dict,也没有用 Mapping。 接下来再看一个 Element 类的声明:

class Element(BaseParser):
    """An element of HTML.
    :param element: The element from which to base the parsing upon.
    :param url: The URL from which the HTML originated, used for ``absolute_links``.
    :param default_encoding: Which encoding to default to.
    """

    __slots__ = [
        'element', 'url', 'skip_anchors', 'default_encoding', '_encoding',
        '_html', '_lxml', '_pq', '_attrs', 'session'
    ]

    def __init__(self, *, element, url: _URL, default_encoding: _DefaultEncoding = None) -> None:
        super(Element, self).__init__(element=element, url=url, default_encoding=default_encoding)
        self.element = element
        self.tag = element.tag
        self.lineno = element.sourceline
        self._attrs = None

    def __repr__(self) -> str:
        attrs = ['{}={}'.format(attr, repr(self.attrs[attr])) for attr in self.attrs]
        return "<Element {} {}>".format(repr(self.element.tag), ' '.join(attrs))

    @property
    def attrs(self) -> _Attrs:
        """Returns a dictionary of the attributes of the :class:`Element <Element>`
        (`learn more <https://www.w3schools.com/tags/ref_attributes.asp>`_).
        """
        if self._attrs is None:
            self._attrs = {k: v for k, v in self.element.items()}

            # Split class and rel up, as there are ussually many of them:
            for attr in ['class', 'rel']:
                if attr in self._attrs:
                    self._attrs[attr] = tuple(self._attrs[attr].split())

        return self._attrs

这里 init 方法接收非常多的参数,同时使用 _URL 、_DefaultEncoding 进行了参数类型注解,另外 attrs 方法使用了 _Attrs 进行了返回结果类型注解。 整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。 以上便是类型注解和 typing 模块的详细介绍。

from typing import Optional, Dict, Union
def cal_meso_ewm_ti(df: pd.DataFrame, ws_col: str, ws_sd_col: str, time_col: Optional[str] = None) -> Dict[
    str, Union[float, str, bool, None]]:
    info: Dict[str, Union[float, str, bool, None]] = {'ewm_ti': None, 'is_completeness': None, 'complete_rate': None,
                                                      'ErrMsg': None}
    ...
    return info

输出一个字典,字典的key类型为str,value类型可以为多种情况,也可以用Any替代,表示任意。

b: float = 5.6
I_ref_values: Dict[str, float] = {'A': 0.16, 'B': 0.14, 'C': 0.12}
if compare_IEC not in ['Class B', 'Class C']:
	info['ErrMsg'] = f"无效的IEC标准类别: {compare_IEC}. 必须是 'Class B' 或 'Class C'."
	return info

对于变量b和I_ref_values的定义,在python中可以直接这么写,把命名方式也给出来。

参考链接:

[1] Python 中 typing 模块和类型注解的使用 2021-3-22
[2] Python Typing 模块——类型注解 2019.6

<think>好的,我现在需要帮助用户了解如何在Python中使用typing模块为变量和函数参数添加类型提示。首先,我得回顾一下用户提供的引用内容,确保回答准确。 用户提到了四个引用,其中引用[1]和[3]主要讲类型提示的作用,比如提高可读性和维护性,以及类型检查的好处。引用[2]提到IDE支持,比如PyCharm和VS Code可以利用类型注解进行补全和错误提示。引用[4]可能涉及兼容性,比如使用__future__导入,但具体到类型提示可能需要Python 3.5+的版本。 接下来,我需要分步骤解释如何添加类型提示。首先,变量和函数参数的类型注解。基本类型像int、str可以直接用。例如,变量声明时用“name: str = 'Alice'”。函数参数的话,比如“def greet(name: str) -> str:”。 然后是复杂类型,比如列表、字典。引用中提到typing模块中的ListDict等泛型。例如,List[int]表示整数列表。需要说明从typing导入这些类型。 可能还需要提到Optional和Union,用于可选参数或多种类型。比如“age: Optional[int] = None”表示可以是int或None。 另外,自定义类型别名,比如Vector = List[float],提高可读性。 用户可能还想知道类型提示在IDE中的效果,比如自动补全和错误检测。比如,如果函数期望str但传入int,IDE会警告。可以引用[2]和[3]来说明这些好处。 还要注意兼容性,Python 3.5+支持类型提示,旧版本可能需要使用注释,但用户可能主要用新版,所以重点放在标准语法上。 最后,总结最佳实践,比如保持一致性,不过度使用等。同时,生成相关问题,如类型检查工具、处理复杂结构、性能影响等。 需要确保所有代码示例正确使用类型提示语法,比如变量后的冒号和类型,函数返回箭头。同时,避免使用Markdown格式,但用户允许在回答中用代码块,所以用三个反引号包裹示例。 检查是否有遗漏点,比如类型提示不会影响运行时,只是静态检查。可以提到mypy这样的工具进行静态类型检查,但引用中没有提到,可能需要避免,或者简单提及。 现在整理结构:分变量、函数参数、返回值、复杂类型、别名、IDE好处几个部分,每部分给出示例,并引用对应的引用内容。最后相关问题围绕应用场景、工具、兼容性等。</think>### 如何在Python中添加类型提示? #### 一、基本语法规则 1. **变量类型注解** 变量声明时使用`变量名: 类型 = 值`格式: ```python name: str = "Alice" age: int = 30 is_valid: bool = True ``` 若变量无初始值,可直接标注类型(需配合`Optional`使用)[^3]: ```python score: Optional[float] = None ``` 2. **函数参数与返回值** 函数参数使用`参数: 类型`,返回值用`-> 类型`标注: ```python def add(a: int, b: int) -> int: return a + b ``` #### 二、复杂类型处理 1. **容器类型** 使用`typing`模块中的泛型类型(如`List`、`Dict`、`Tuple`): ```python from typing import List, Dict names: List[str] = ["Alice", "Bob"] scores: Dict[str, float] = {"Math": 90.5, "English": 88.0} ``` 2. **联合类型与可选值** - `Union`表示多类型兼容: ```python from typing import Union def parse_input(value: Union[str, int]) -> int: return int(value) ``` - `Optional`等价于`Union[T, None]`: ```python from typing import Optional def find_user(id: int) -> Optional[str]: return username if exists else None ``` #### 三、高级应用 1. **自定义类型别名** 提高复杂类型的可读性: ```python from typing import List, Tuple Coordinates = List[Tuple[float, float]] def draw(points: Coordinates) -> None: ... ``` 2. **回调函数类型标注** 使用`Callable`定义函数参数: ```python from typing import Callable def on_success(callback: Callable[[int, str], None]) -> None: callback(200, "OK") ``` #### 四、IDE支持与优势 1. **代码补全** 标注类型后,IDE会根据类型推断成员方法(如`str`类型提示会补全`.upper()`方法)[^2]。 2. **错误检测** 若传入错误类型参数(如向`int`参数传递字符串),IDE会直接标记红线警告[^3]。 #### 五、完整示例 ```python from typing import List, Dict, Optional def process_data( data: List[Dict[str, int]], threshold: Optional[int] = None ) -> Dict[str, float]: result = {} for item in data: key = list(item.keys())[0] value = item[key] if threshold and value < threshold: continue result[key] = value * 0.8 return result ``` #### 六、注意事项 - **运行时影响**:类型提示仅用于静态检查,不会影响程序执行[^1]。 - **版本兼容**:Python 3.5+原生支持,旧版本需通过注释实现(不推荐)[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值