小波变换(深入浅出)

本文深入探讨了傅里叶变换的局限性,特别是在处理非平稳信号时的问题。短时傅里叶变换(STFT)作为改进,通过加窗方法提供了一定的时频分析能力,但窗口宽度选择仍然是挑战。小波变换通过变换基函数,实现了更精确的时频分析,尤其适用于非稳态信号。文章详细介绍了连续小波变换(CWT)的概念、理论和Python实现,展示了小波变换如何捕获信号的频率和时间信息,以及其在信号处理中的优势。
摘要由CSDN通过智能技术生成

前半部分参考知乎:咚懂咚懂咚
​https://zhuanlan.zhihu.com/p/22450818

从傅里叶变换(傅里叶变换原理)到小波变换,并不是一个完全抽象的东西,可以讲得很形象。

小波变换有着明确的物理意义,下面我就按照傅里叶–>短时傅里叶变换–>小波变换的顺序,讲一下小波变换。

一、傅里叶变换

默认大家现在正处在理解了傅里叶变换,但还没理解小波的道路上。

下面我们主要讲傅里叶变换的不足。即我们知道傅里叶变换可以分析信号的频谱,那么为什么还要提出小波变换?

答案就是,“对非平稳过程,傅里叶变换有局限性”。看如下一个简单的信号:
在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值