参考链接:https://blog.csdn.net/crazy_scott/article/details/84395239
使用ax.hist()函数想要把数据转为密度直方图,但发现直接使用density=true得到的值很奇怪,y轴甚至会大于1,不符合我的预期。
查了资料发现density=ture的意思是保证该面积的积分为1,并不是概率和为1,因此我们需要对其进行改进。
最简单对方法就是对每个bin增加权重,强迫它为我们的概率值:
weights = np.ones_like(score_list)/float(len(score_list))
probabilities,bins,_ = plt.hist(score_list, weights=weights)
这样就可以保证y轴和为1了~
2022.11.7(一)更新,推荐
import seaborn as sns
sns.histplot(df['ans3'], kde=True, stat='probability', color='blue', label='ws')