转自:https://blog.csdn.net/weixin_42887138/article/details/117708688
1. 案例分析
这里,我们来解读一下scipy中给出的层次聚类scipy.cluster.hierarchy的示例:
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage,fcluster
from matplotlib import pyplot as plt
X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
Z = linkage(X, method='centroid')
f = fcluster(Z,t=3,criterion='distance')
fig = plt.figure(figsize=(5, 3))
dn = dendrogram(Z)
print('Z:\n', Z)
print('f:\n', f)
plt.show()
可以得到输出结果:
Z:
[[ 2. 7. 0. 2. ]
[ 5. 6. 0. 2. ]
[ 1. 9. 1. 3. ]
[ 4. 8. 1. 3. ]
[ 0. 11. 1.66666667 4. ]
[ 3. 12. 3.25 5. ]
[10. 13. 7.26666667 8. ]] (7 × 4)
f:
[2 1 2 3 2 1 1 2] (1 ×)
f 代表了 [2, 8, 0, 4, 1, 9, 9, 0] 的每一个元素属于哪一个类别,这里设置了 3 类。如果想要 5 类的话,就可以在 fcluster 函数中的 t 参数设置为 t=5 即可。
关于 Z 矩阵的意义
由于层次聚类每一次都会聚合两个类,那么如果有 n 个样本,那么最终会进行(n-1)次聚合,显然,Z 矩阵有 n-1 行,这就意味着每一行表示了一次操作。
那么接下来,我们从上到下解读。
首先, Z 矩阵表示一个树状图,对于每一行来说,其中第一个和第二个元素是每一步合并的两个簇(本例中的 2 和 7),第三个元素是这些簇之间的距离,第四个元素是新簇的大小——包含的原始数据点的数量.
第一步:
根据 Z 的第一行,那么索引 2 和 7 将会合并为一个新的类,新的类给一个新的索引,譬如为 8,第三个数 0 表示索引 2 和 7 的两个簇之间的距离为 0,这是显然的。最后一个数 2 表示当前合并完的这个类有 2个元素。
同理,我们可以把这一系列过程都表达如下:
2. 常用参数的设置
- linkage函数
import scipy.cluster.hierarchy as hcluster
Z = hcluster.linkage(X, method='centroid')
- 第一个参数y为一个尺寸为(m,n)的二维矩阵。一共有n个样本,每个样本有m个维度。
- 参数method =
’single’:一范数距离
’complete’:无穷范数距离
’average’:平均距离
’centroid’:二范数距离
’ward’:离差平方和距离 - 返回值:(n-1)*4 的矩阵 Z
- fcluster函数
->从给定链接矩阵定义的层次聚类中形成平面聚类
import scipy.cluster.hierarchy as hcluster
f = fcluster(Z, t=3, criterion='distance')
这个函数压平树状图
这种分配主要取决于距离阈值 t——允许的最大簇间距离
- 参数 Z 是 linkage 函数的输出 Z。
- 参数 scalar:形成扁平簇的阈值。
- 参数 criterion :
- ’inconsistent’:预设的,如果一个集群节点及其所有后代的不一致值小于或等于 t,那么它的所有叶子后代都属于同一个平面集群。当没有非单例集群满足此条件时,每个节点都被分配到自己的集群中。
- ’distance’:每个簇的距离不超过 t。
- criterion=‘maxclust’:当取这个参数时,t 表示最大分类簇数。
- maxclust_monocrit :
- monocrit :
- inconsistent :
- 输出是每一个特征的类别。
- dendrogram函数
绘制层次聚类图
参考链接
[1] 层次聚类python,scipy(dendrogram, linkage,fcluster函数)2021.6
[2] Python scipy.cluster.hierarchy.fcluster用法及代码示例 2022.7
[3] 层次聚类算法及通过python的scipy进行计算 2022.7