pd.concat()函数sort=true和false及ignore_index参数介绍

本文介绍了Pandas的pd.concat()函数中sort和ignore_index参数的作用。sort=True时,按列名排序;sort=False或默认时不排序。ignore_index=True会忽略原始索引,生成新的整数索引,方便后续操作。示例展示了这两个参数如何改变合并DataFrame的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sort 参数

pd.concat()函数sort=true和false为什么结果是一样的

pd.concat() 函数 sort=true 和 false 为什么结果是一样的,sort=True, 俩表都各自按各自原来索引顺序排列,那 false 应该就是不按原来的索引排列了呀?
在这里插入图片描述
在这里插入图片描述
答:
默认 axis=0 时,设置 sort=True 会将拼接的数组根据列名排序,设置sort=False则不进行排序,这里默认等于None是不传入参数,也相当于不进行 sort 操作。
在这里插入图片描述
在这里插入图片描述

ignore_index

pd.concat() 是 pandas 库中用于合并数据的函数之一。在这个函数中,参数 ignore_index=True 是一个布尔值参数,它的作用如下:

ignore_index=True 时,表示在合并数据的同时忽略原始数据的索引(index),新生成的合并后的数据会重新生成一个默认的整数索引。

举个例子,假设有两个 DataFrame,分别是 df1 和 df2:

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                    'B': ['B0', 'B1', 'B2'],
                    'C': ['C0', 'C1', 'C2']})

df2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'],
                    'B': ['B3', 'B4', 'B5'],
                    'C': ['C3', 'C4', 'C5']})

如果我们不设置 ignore_index=True,则合并后的 DataFrame 会保留原始数据的索引:

result = pd.concat([df1, df2], axis=0)

合并后的结果会是:

    A   B   C
0  A0  B0  C0
1  A1  B1  C1
2  A2  B2  C2
0  A3  B3  C3
1  A4  B4  C4
2  A5  B5  C5

可以看到,合并后的 DataFrame 的索引是连续的,保留了原始数据的索引。

但如果我们设置了 ignore_index=True

result = pd.concat([df1, df2], axis=0, ignore_index=True)

合并后的结果会是:

    A   B   C
0  A0  B0  C0
1  A1  B1  C1
2  A2  B2  C2
3  A3  B3  C3
4  A4  B4  C4
5  A5  B5  C5

可以看到,合并后的 DataFrame 的索引重新生成,变成了默认的整数索引。

这个参数通常在我们合并数据后,不希望保留原始数据的索引时会很有用,以便后续操作更方便。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值