风向对风力机发电的影响

1. 摘要

随着风力发电机的增大,风向随高度的变化(风偏转)在入流风场中起到了至关重要的作用。我们使用明尼苏达大学Eolos风能研究站5年的实地数据集来探讨风偏转的特性及其对涡轮性能的影响。风偏转表现出明显的日变化,即在夜间和白天分别倾向于出现风偏转风回转。我们进一步建议根据涡轮上下旋翼的变化将风偏转条件划分为四种情景,这些变化影响不同旋翼部分的载荷:VV(上旋翼:偏转,下旋翼:偏转)、VB(上旋翼:偏转,下旋翼:回转)、BV(上旋翼:回转,下旋翼:偏转)和BB(上旋翼:回转,下旋翼:回转)。

这种划分使我们能够更好地阐明风偏转涡轮发电量的影响。顺时针旋转的涡轮在VV和VB情景中往往会产生大量的功率损失,而在BV和BB情景中会产生小的功率增益。逆时针旋转的涡轮与顺时针旋转的涡轮呈现完全相反的趋势。得出的发现可以推广到其他风力站点进行功率评估,并为针对最大利润的涡轮类型选择提供洞察。

2. 简介

风的偏转可以根据风旋转的方向被分类为逆时针偏转风顺时针偏转风。在北半球,逆时针偏转风是顺时针(CW)转动的,它通常与温暖的气流上升和动态上升有关,主要是因为南风会将更多的热空气输送到北方。而顺时针偏转风是随着高度逆时针(CCW)转动的,它通常与冷空气的下沉和动态下沉有关。

他们发现风偏转遵循一个日常循环,稳定的夜间条件允许高幅度偏转风的出现概率更高。

在陆地站点上,风偏转的这种年度变化仍然不清楚,由于不同的大气条件,如更高的湍流耗散,它可能与离岸观测有很大的不同。

总之,现有的现场研究在风向偏转如何影响风机发电方面缺乏一致的结论。此外,当前模拟的改进在很大程度上依赖于现场数据,以提供现实的风向偏转流入特性。因此,在本研究中,我们希望通过利用明尼苏达大学Eolos风能研究站(以下简称Eolos站)长期测量的现场数据库,对风向偏转特性进行系统评估,包括日常和年度变化,以及它们对风机功率性能的影响。第二部分描述了Eolos站的实验设施和数据预处理方法。第三部分引入了四种关于风向偏转与风机转子相互作用的新概念,并对风向偏转特性及其对风机发电的影响进行了详细描述。第四部分总结了本研究的主要发现,并简要讨论了如何在风向偏转条件下提高风机功率性能。

3.

在这里插入图片描述
图 1. (a) 描述了站点上2.5兆瓦的风力发电机和气象塔的示意图。 (b) 基于近五年来测得的轮毂高度的风向和风速的风向玫瑰图。百分比水平表示在15°风向扇区内特定情况的出现频率。“N”、“E”、“S” 和 “W” 分别代表北、东、南和西的方向。

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值