如何进行风电场微观选址

3.1 平坦地形的微观选址

平坦地形可以定义为,在风电场区及周围5km 半径范围内其地形高度差小于50m,同时地形最大坡度小于3°。实际上,对于周围特别是场址的盛行风的上(来)风方向,没有大的山丘或悬崖之类的地形,仍可作为平坦地形来处理。

在平坦地形进行微观选址时,主要考虑以下两个方面:

第一、粗糙度的影响

对平坦地形,在场址地区范围内,同一高度上的风速分布可以看作是均匀的,可以直接使用邻近气象台站的风速观测资料来对场址区进行风能估算。对平坦地形,采用同一叶轮直径的风电机组,提高风电机组功率输出的唯一方法是增加塔架高度。

第二、障碍物的影响

障碍物是指针对某一地点存在的相对较大的物体,如房屋等。当气流流过障碍物时,由于障碍物对气流的阻碍和遮蔽作用,会改变气流的流动方向和速度。障碍物和地形变化会影响地面粗糙度,风速的平均扰动及风轮廓线对风的结构都有很大的影响,但这种影响有可能是有利的(形成加速区),也有可能是不利的(产生尾流、风扰动)。所以,在选址时要充分考虑这些因素。

由于气流通过障碍物时,在障碍物的下游会形成尾流扰动区,然后逐渐衰弱。在尾流区,不仅风速会降低,而且还会产生很强的湍流,对风电机组运行极为不利。因此,在设置机位时必须注意避开障碍物的尾流区[4]。

3.2 复杂地形的微观选址

我国沿海及内陆存在着大量的山地。复杂山地的风流不仅是由大地形以及气候引起的,更多的则受到局部地形的影响。对于简单地形,大地形以及气候是引起风流的主要起因;而对于复杂山地,局部地形对风流的加速、对风向的偏转是造成风电场微观选址的难题所在[10]。

在对复杂地形进行微观选址时,风电机组间距的计算尚无成熟快捷、简便的方法,通常需通过多次试算最终确定方案。

在复杂地形和气候条件下,驱动风流的因素并不唯一,一个特殊的流动情况是:风速并不随高程的上升而升高,在某一高度后,风速随高程的上升而降低。微观选址技术的标准不明确以及依据或依赖国外标准制造的风电设备与场址适应性问题,直接导致在复杂的地形和恶劣的气候条件下微观选址结果差异显著.风电机组设备的运行可靠性不高,运行控制变得更加困难,实际出力也比预测评估的要低[10]。

对山区、山丘等复杂地形,不能按简单平坦地形的原则确定风电机组位置,而应根据实际地形测算各点的风力情况后,经综合考虑安装、地形地质等各方面因素后,选择合适的地点安装风电机组。在地形复杂、地势险峻的高山上选址还应考虑运输、吊装、线路安装等要求[11]。

由于受复杂地形自身的影响较大,有的仅能在山脊位置进行单排布置;有的仅能在可放置风电机组的位置上布置;有的地方有山谷、山丘等地形组合,机组布置受多种因素的综合影响[11]。

3.3 机组合理布局以避免尾流干扰

从充分利用风能资源的角度出发,找寻出符合风电场整体的能量利用最大化要求的排布方案,是完成风电场微观选址工作首先要解决的问题。而影响风电场全场能量利用寻优的关键因素是认识并解决好机组尾流影响问题。

一般而言,当风经过风轮叶片后,风轮一方面会吸收部分风能,同时转动的风轮又致使风的湍动能增大,产生气流畸变、湍流,而风速会呈现突变减小的现象,这就是所谓的风电机组尾流效应。之后,在周围流场的约束下,风速又会随着风轮的距离渐远而得以逐渐恢复。如果风电场内风电机组布置紧密,则可能出现上游机组后面风的尾流效应尚存,风速尚不及恢复,进而导致下游机组风况“恶化”,输入风能不足,发电出力降低的情况[12]。

机组尾流产生的气流畸变和湍流,会在下游机组的叶轮上产生交变载荷,从而造成叶片断裂、主轴轴承、齿轮箱等部件的损坏,缩短机组的寿命。由于较高的尾流效应相应有较高的湍流强度,而在风电场全场范围取得一个相对较小的平均尾流效应,又会有利于保持全场机组的荷载均衡性,进而有利于提高全场的运行维护效率[12]。

但是,风电场内又难以绝对避免尾流效应影响,因为如果机组布置过于稀疏,不但会相应占用过多土地,且风电场范围会过大,其工程投资成本和运行维护费用亦会显著增大。因此,机组间距的确定,或说是控制机组尾流效应,是一个考虑综合因素平衡的技术经济选择过程[12]。

3.4 采用工程软件进行微观选址

目前,国内微观选址通常采用国际上较为流行的风电场设计软件WASPWindFarmer进行风况建模,建模过程如下:

根据风电场各测风点校对、修正后的测风资料、地形图、粗糙度,利用轮毂高度的风资源栅格文件满足精度及高度要求的WindFarmer软件的三个输入文件,包括:轮毂高度的风资源栅格文件、测风高度的风资源栅格文件及测风高度的风资源风频表文件。

采用关联的方法在WindFarmer软件中输入WASP软件形成的三个文件,输入三维的数字化地形图(1:10000或1:5000),地形复杂的山地风电场应采用1:5000地形图,输人风电场空气密度下的风电机组功率曲线及推力曲线,设定风电机组的布置范围及风电机组数量,设定粗糙度、湍流强度、风电机组最小间距、坡度、噪声等,考虑风电场发电量的各种折减系数,采用修正PARK尾流模型进行风电机组优化排布。

根据优化后的坐标,利用GPS到现场踏勘定点,根据现场地形地貌条件和施工安装条件进行机位的微调,并利用GPS测得新的坐标,然后将现场的定点坐标输入Windfarmer中,采用粘性涡漩尾流模型对风电场每台风电机组发电量及尾流损失进行精确计算[13]。

目前的微观选址技术,主要是应用经验和基于线性模型的工具软件。各种软件都有其适用条件及局限性,在使用过程中,应充分了解风电场状况与软件特性,以优化机位布置。

3.5 风电场选址的步骤

计算整个风电场的风能资源,找出风能资源较好的位置;根据具体的地形、道路情况确定适合布置风电机组的地形位置,要求坡度较缓(小于10°)、交通方便;在满足上述条件的前提下确定不同间距的多种方案,间距在主风向上为5~9倍的机组直径,在垂直主风向上为3~5倍的机组直径;确定机组间距后在实际地形上布置风电机组,计算发电量及湍流强度、尾流损失等的影响;进行方案比较,选择合理的风电机组间距布置风电机组[11]。

参考资料

[1] 风电场资源勘查及微观选址 2020.12 问题是,本文的引文信息不完整

<think>好的,我现在需要帮助用户了解或实现得物签名的相关技术,特别是签名算法的实现方式。首先,我需要收集已有的信息。根据用户提供的引用,特别是引用[4]和[5],得物的签名算法可能涉及逆向工程分析,使用了JavaScript中的XMLHttpRequest重写来拦截请求,并在请求中包含特定的sign参数。这可能意味着签名生成是在客户端进行的,通常在前端JavaScript代码中完成。 接下来,我应该考虑常见的签名生成方法。常见的Web应用签名算法通常使用HMAC、AES、RSA或自定义的哈希组合。引用[1]提到了RSA算法,但得物的签名可能更倾向于使用HMAC-SHA256之类的哈希算法,结合时间戳、随机数和请求参数进行签名,以防止篡改和重放攻击。 用户可能需要具体的步骤,比如逆向分析得物的JavaScript代码,找到生成sign的函数,提取关键参数和加密逻辑。引用[5]中的代码片段展示了如何重写XMLHttpRequest的open方法来拦截请求,这可能用于调试和定位签名生成的代码位置。 此外,引用[4]提到使用Python进行算法还原,所以可能需要在Python中复现JavaScript的签名生成逻辑。这通常涉及分析请求参数如何排序、拼接,以及如何与密钥结合进行哈希或加密。需要注意反爬机制,如obfuscation(代码混淆)或动态密钥,这可能需要使用AST(抽象语法树)解析或动态执行来还原算法。 用户可能还需要了解如何应对反调试措施,比如在Chrome开发者工具中使用断点调试,或者使用工具如Frida进行Hook。同时,引用[3]和[4]强调了法律和合规问题,确保研究仅用于学习目的,不用于非法用途。 最后,应该提醒用户注意法律风险,遵循网站的使用条款,避免侵犯知识产权或违反计算机安全法律。总结起来,实现得物签名需要逆向工程分析前端代码,提取关键算法,处理可能的混淆和反调试,最后用目标语言如Python复现算法。</think>### 得物签名算法实现方式分析 得物签名算法主要用于接口请求的身份验证和防篡改保护,常见实现方式涉及以下技术点: #### 1. **签名参数组成** 签名通常由以下参数动态生成: - 请求参数(经排序、过滤空值后拼接) - 时间戳(如:$timestamp=1620000000$) - 随机数(如:$nonce=5a8s3d$) - 设备指纹(如:$device\_id=abcdef$) - 应用密钥(加密盐值,可能动态获取)[^4] 示例参数拼接逻辑: $$ \text{sign\_str} = \text{path} + \text{sorted\_params} + \text{timestamp} + \text{nonce} $$ #### 2. **加密算法类型** 根据逆向分析,得物可能采用以下组合: - **HMAC-SHA256**:对拼接字符串进行哈希运算 - **AES/Base64编码**:对结果二次处理 - **自定义位移/异或操作**:增加逆向难度[^5] #### 3. **JavaScript代码混淆** 关键函数可能被混淆,例如: ```javascript function _0x12ab5(a, b) { return a ^ b << 3; } // 需要AST解析还原控制流 ``` #### 4. **Python算法还原示例** ```python import hmac import hashlib def generate_sign(params, secret_key): # 1. 参数排序并拼接 sorted_str = '&'.join([f"{k}={v}" for k,v in sorted(params.items())]) # 2. HMAC-SHA256加密 sign = hmac.new(secret_key.encode(), sorted_str.encode(), hashlib.sha256).hexdigest() # 3. 自定义处理(示例) return sign.upper() + str(int(time.time())) ``` #### 5. **反爬对抗措施** - 动态密钥:通过接口定期更新加密盐值 - 环境检测:验证是否在真机环境运行 - 请求频率限制:异常高频触发验证码[^5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值