目录
1. 测风塔选址的目标与基本原则
风电场测风塔(测风气象塔)的选址需要满足多方面要求,核心目标是在保证安全的前提下获取具有代表性的风资源数据,为后续风资源评估和风机布局提供可靠依据。选址基本遵循以下原则:
-
数据代表性:测风塔应布置在能代表风电场整体风况的位置,即测得的数据具有区域代表性 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。由于测风塔位置直接影响所测数据对风场的代表程度,选择最优位置至关重要 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。只有代表性的测风数据才能用于推算整个风场各机位的长期风气候状况,降低风能评估的不确定性 ()。
-
充分反映风资源特性:测风塔应布设在能充分反映场址风资源丰度和特征的位置,例如主导风向上的开阔高地或风速较大的区域,使测得的数据能反映场区的风资源水平和分布。例如,若场区存在显著的地形加速区域(如山脊),应尽量在这些区域附近设塔以捕捉高风速特征。这样可确保测风数据真实反映风电场的风能资源状况,避免因选址偏离主要风区而低估或高估可用风能。
-
结构安全与建设可行:测风塔的选址还需考虑塔体结构的安全稳固和施工运行的可行性。一方面,塔基所在地形应相对平整坚实,便于安装塔架及缆绳锚固,确保测风塔在强风等极端条件下结构安全可靠;另一方面,应避免将测风塔置于紊流严重或风剪切过大的位置,以免影响设备安全和数据质量(例如紧邻峭壁的湍流区或狭窄山谷的强风汇聚区)。此外,选址应考虑交通运输和维护便利性,有可供车辆和起重机械到达的道路,施工和日常运维可行成本合理。
综上,测风塔选址需在数据代表性和采集质量以及工程可实施性之间权衡,遵循行业规范和经验准则,确保测得的风况数据既准确可靠又具有区域代表意义。
2. 测风塔选址的关键影响因素
复杂地形下测风塔选址受多种因素影响,需要系统评估下列关键因素对风况代表性和塔架布设的影响程度:
2.1 地形复杂度
地形起伏程度直接决定了风场内风速风向的空间变化程度,也是测风塔代表性区域范围(代表性半径)的限制因素 ()。一般而言,地形越复杂,风的流场受地形扰动越显著,不同位置的风况差异越大,意味着单一测风塔能代表的空间范围越小 ()。例如,当地形坡度大于0.3(约17°)时即属复杂地形 ()。在这种山地丘陵环境中,单靠距离测风塔较近并不能保证数据可外推到整个风场,因为山谷与山脊、迎风坡与背风坡的风资源可能差异巨大。如果场区地形非常复杂,则需基于现场具体地形进行专门的选址分析 (),包括可能布设多个测风塔来覆盖不同的地形单元。由于复杂地形容易形成湍流和尾流区,选址时应尽量避开局部地形导致的分离流或涡流区域,优先选择地形相对凸起平滑、能顺畅迎风的位置,以提升测风数据的稳定性和代表性。
2.2 主导风向
主导风向(场址盛行风向)是测风塔选址必须考虑的重要风况因素。测风塔应布置在能够充分迎接主导风向来流的位置,避免受到主导风向上游障碍物或地形的遮挡 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。例如,对于主要西北风的场址,应尽量将测风塔设在场区内西北侧开阔且上风侧无阻挡的位置 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。这样塔架所测得的风向频率和风速分布才能与实际风场一致。如果测风塔处于主导风向的背风坡或被其他高地遮蔽,其测得的数据将无法反映真实的主导来流特征。选址时通常首先确定场区一年中占比最大的几种风向,确保测风塔周围360°范围内,这些主风向对应的上风方向有足够长的流线距离(开阔上风路径)且无显著地形突起或障碍物。根据工程经验,如果测风塔周围某方向存在高大障碍,应使该障碍避开场区主导风向的上游方向,从而确保主风向上的风流未被扰动。综言之,测风塔应面对主导风,才能捕获场区最重要的风资源来流信息。
2.3 地表粗糙度与地物障碍
地表粗糙度是指地表下垫面的粗糙程度(植被、建筑物等)对近地风速廓线的削减作用。不同下垫面条件会导致风速高度分布和湍流强度产生差异,因此测风塔选址需要考虑周围地表特性的代表性 ()。理想情况下,测风塔周边下垫面(如植被覆盖、地表粗糙度长度)应与整个场址的大范围下垫面条件相近 ()。例如,如果风电场区域主要为低矮草地,那么测风塔不宜设在局部有高大树林的区域,否则森林的高粗糙度会大幅降低测得风速,不代表开阔草地的实际风况。同样地,若场区存在大片水域或光滑地表,而测风塔周围却是崎岖地表,也会产生不一致。根据相似性原则,测风塔地点在粗糙度、地形起伏和周边障碍物方面与待评估风机位置越相似,其测风数据外推预测误差越小 () ()。因此选址时应避免附近存在异常粗糙或光滑的小范围地带,或显著高耸的障碍物(如独立大树、电塔、建筑物),以免其局部影响主导测风。一般要求测风塔应距离周边任何高度超过塔高的障碍物至少10倍障碍物高度以上的距离,并位于其上风向,以将障碍物对风速的干扰降至可忽略水平。这些措施可确保测风塔测得的风速衰减和紊流特性主要反映大范围地表条件,而非局部异常,从而提高数据对整个风场的适用性。
2.4 交通和施工条件
测风塔通常高度在60~100米,安装和后期维护需要大型设备和车辆进出。因此,交通便利性也是选址时的现实考量因素之一。场址内应优先选择靠近现有道路或较易修建简易道路的位置建设测风塔,以方便运输塔架段件、吊装设备以及日常的数据维护和校准工作。过于偏远陡峭、车辆难以到达的山顶位置即使风资源条件理想,实际施工难度和成本也会很高,需要权衡取舍。在复杂山地,常需要对简单土路进行改造才能将塔材运至安装点,因此选址时会尽量利用已有林道、牧道等,从而降低新建道路的工作量 ()。除了交通,以施工可行性为着眼点的因素还包括:塔基地的土质岩性需能满足基础浇筑和锚固要求,坡度不宜过陡(通常要求塔基周围较平坦区域半径不少于塔高的0.5倍),并留有足够空间张拉拉线。复杂地形中,若单个位置无法满足布设自立式高塔的空间和稳定性要求,可能考虑改用锚线塔或降低塔高、增设多塔的方案来克服施工限制。总之,选址要在不严重影响数据代表性的前提下,选择工程实施相对简便、安全系数高的位置,以保证测风塔能顺利建成并长期可靠运行。
3. 复杂地形环境的测风塔选址方法
针对山地、丘陵等复杂地形环境,传统经验与现代技术手段相结合的选址方法能够提高测风塔选址科学性。以下介绍几种常用的方法和策略:
3.1 现场踏勘与经验选点
现场踏勘是测风塔选址的基础环节。经验丰富的风能工程师会实地考察风电场拟建区域的地形地貌、植被和周边状况,结合既有研究和工程经验提出备选测风位置 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。通过实地走访高点、山脊线、谷地等典型地形部位,观察局地地形对风的加速或阻挡迹象(如植被倾向、雪压痕迹),并与多年气象风向频率信息相对照,工程师可以初步圈定若干经验上认为风况良好且代表性强的位置。传统原则包括:选择开阔高地、避开上游有障碍的地点、靠近预期风机阵列中心的位置等 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。例如,根据经验可排除明显不利的位置——如果某备选点处于主要风向的下风坡且距离风机位置很近,则由于遮挡和尾流影响应剔除 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library);又如,如果某点海拔远低于大部分待建风机位置,也不宜选为唯一测风塔位置,因为风速高度梯度差异大 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。通过现场踏勘和定性分析,通常可以筛选出“候选点清单”供进一步分析使用。需要强调的是,现场经验选址方法依赖专家判断,具有一定的主观性和定性特点 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。虽然资深工程师的直觉往往能找到较优位置,但在复杂地形下仍可能存在未考虑到的微地形影响。因此,现场踏勘一般作为初步筛选手段,接下来通常会结合数值模拟或测算方法,对这些经验候选点进行定量评估验证,以提高选址决策的可靠性。
3.2 CFD建模辅助选址
对于复杂地形,计算流体力学(CFD)建模已成为辅助选址的有力工具。CFD模拟通过求解大气流动的Navier-Stokes方程,能够精细刻画山地丘陵区域的三维风场,包括风速随地形的加速(如越山脊风速增大)、分离(如过峭壁后形成低速区)等效应,从而为选址提供详实依据 (Microsoft Word - WP_Paper_MIT6.doc)。典型方法是:利用CFD软件(如WindSim、OpenFOAM等)对拟建风场区域在主导风向下的风况进行模拟,生成高分辨率的风速分布图,据此评估不同位置的风资源优劣 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。通过CFD模拟,可定量比较候选测风塔位置的风速、湍流强度等指标,选择能够代表大部分风机位置平均风速且不处于极端湍流区的位置。例如,有研究提出将风场区域划分网格并计算每个网格点的风能指标,以此筛选出若干优选区域 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。然后再采用评价指标(如年平均风速、代表性系数等)对这些区域进行排序,确定最优的测风塔站点。这种基于CFD的选址定量评价方法在案例研究中被证明是有效的 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library) (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library)。CFD辅助选址的优势在于:能够全面考虑复杂地形的影响,包括地形抬升导致的局部高风速区、山谷效应导致的风道集中区,以及尾流、湍流区的位置,从而避免仅凭经验可能出现的偏差。 (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram)CFD模拟结果往往揭示出最佳测风位置和实际风机布局之间的关联。例如,有研究在对山地风场进行CFD建模后发现,通过将测风塔(及风机)选在山脊高风速区,相比原先布局可使年发电量提高约10% (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram)。这说明CFD辅助能有效识别传统经验难以察觉的风能富集区和低风速死角,从而优化测风塔位置。需要注意的是,CFD模型本身也需要实测数据校验,因此常常测风塔选址和CFD分析相互配合迭代:先用CFD推荐选址,再以实测数据反过来验证和调整CFD模型参数,使模拟更接近实际。总的来说,CFD建模为复杂地形测风选址提供了科学量化的支撑,使选址决策更加客观可靠。
3.3 GIS分析与风资源分布可视化
地理信息系统(GIS)技术在风电场选址中主要用于空间数据的综合分析和可视化。在测风塔选址阶段,GIS可将多源数据(地形、土地、风资源等)叠加分析,帮助直观评估不同区域的风资源优劣和选址条件。首先,可利用区域风资源评估成果(如全球风能资源地图或数值风场模拟结果)获取场址内各地点的年平均风速或风功率密度分布 (Global Wind Atlas | Data Catalog)。这些数据通常以栅格或等值线图形式展现,高风速区域和低风速区域在地图上一目了然。借助GIS的可视化功能,决策者可以直观看到山脊、山谷等地形与风速分布的对应关系。其次,GIS还能整合其它选址因子进行多准则分析。例如,将风速分布图与地形坡度图、植被覆盖图、道路分布叠加,可以综合评估某地点是否同时具备风速高且施工可行等优势。如果需要进一步定量决策,可采用GIS中的多因素加权模型或层次分析法(AHP)等,给各因子赋权计算综合适宜度,从而选出满足多个条件的最优站点。这类GIS辅助决策方法已用于优化气象站/测风网的布局 ()。通过GIS分析,复杂地形风场中的优势风能区(如主风向迎风坡的高风区)和劣势区(如下风向背风涡流区)都能明确标识,有助于筛选测风塔的备选区域。此外,GIS还能用于确定测风塔覆盖范围:例如绘制测风塔一定半径内的等高线或风速梯度,判断单塔数据能代表的区域范围是否覆盖所有拟建风机位置。如果不够,则提示需要增加测风塔数量或重新选址。
(Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram) (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram) (image) 图1:某复杂山地风电场经CFD模拟得到的30米高度年平均风速分布图 (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram)。颜色由蓝(低)到红(高)表示风速大小。不规则地形导致风速分布不均匀,高风速主要集中在山脊和迎风坡区域(红色区域),而山谷和背风坡处风速较低(蓝色)。通过GIS可视化这样的风场风速地图,能直观识别最具代表性的测风选址区域以及局部的风能富集带 (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram)。
3.4 多塔联合布设策略
在大规模或地形特别复杂的风电场,仅靠单一测风塔往往无法满足风况全面测量的需求。此时可采取多测风塔联合布局的策略,即在风场内布设多个测风塔以覆盖不同区域,再将观测结果综合用于评估整个场址的风资源 ()。标准做法是在风场范围内选取2个或以上具有代表性的地点分别架设测风塔(如分别位于场区的不同子区域、主导风向不同的坡面等),这样每个测风塔负责其附近区域的风况测量,组合起来提高对全场风资源的把握度 ()。对于多塔数据的应用,常采用加权插值或分区校正方法:例如以距离远近对各测风塔的风速预测进行加权平均,从而估算任意风机位的风速 ();或者先根据地形将风场划分成若干风况相似分区,每区由相应的测风塔代表。当需要预测某台风机处的风资源时,优先采用距离最近的测风塔数据,或基于多个测风塔数据的加权结果 ()。研究表明,多点测风比单点外推能显著降低复杂地形下风资源评估的不确定性,提高年发电量预测的准确度 ()。除了固定塔,多塔策略还可以引入移动式和远程观测手段。例如部署激光雷达(LiDAR)或声雷达(SODAR)等远程测风设备,定期在场区内多个位置进行测风扫描 ()。LiDAR等设备能够在不同高度探测风场,并可相对灵活地移动位置,辅助验证测风塔未覆盖区域的风况 ()。一些项目采用“一主多辅”方案:即建一座高塔作为主测风塔,同时使用1-2台LiDAR在周边短期测风,对主塔数据进行空间补充和校准 ()。这种联合观测不仅经济高效,还提高了复杂地形下风资源评估的可信度。在实际应用中,多测风塔的布设需要考虑成本,但相对于风电场投资而言,为了降低不确定性增加一两个测风塔是非常值得的投入。综合来看,多塔联合策略通过空间加密观测,全面捕捉了复杂地形中风场的非均匀性特征,为后续风资源评估和机组优化布局提供了坚实的数据基础。
4. 选址对风资源评估可靠性及风场设计的影响
测风塔选址的优劣对后续风电场开发的多个环节有直接影响:
-
影响风资源评估的准确性和不确定度:测风塔提供的长期风速风向数据是风资源评估的基石,其代表性决定了对整个场区年平均风速和年发电量预测的可信度。如果选址不当(例如测风塔处风速系统性偏高或偏低于场区平均水平),将导致风资源评估出现系统偏差,进而影响项目可行性判断。因此,为降低不确定性,国际上要求风电场必须进行现场实测,并优化测风塔选址以获取高质量数据 ()。实测数据不充分或有代表性缺陷,会增加能量预测的不确定性范围,投资方和金融机构会因此提高折现率或要求更高的风险缓冲,影响项目经济性 ()。相反,若测风数据可靠,评估结果更为稳健,项目融资和设计都会更具信心。
-
影响CFD及其他模型校准:复杂地形风场通常会利用CFD等模型进行精细化风资源评估,这些模型需要至少一个测风塔数据进行校准验证。如果测风塔位置选得不具代表性,模型在该处调整到吻合实测后,反而可能在其他未设测风塔区域出现偏差。例如,若将测风塔设在山谷低风速处校准模型,则对于山脊高风速区域预测可能出现系统性低估 ()。正如文献所指出的,如果测风塔(预测点)与风机实际位置(预测目标)在粗糙度、地形等方面不相似,即使缩短距离也难以减少模型误差 ()。因此,良好的选址应让测风塔处的风况与大部分风机点尽可能类似 ()。只有这样,CFD等流场模型经过该点校准后,才能较准确地推算整个风场范围内的风况。从这个角度看,测风塔选址实际上决定了模型校准的基准,如基准错了则全面错。因此,常建议在复杂地形中多设测风塔或辅以移动测风,以保证对模型进行多点校准,提升模拟精度。
-
影响风机布置和发电量:测风塔收集的数据直接用于风电场机组排布和功率预测。如果测风数据低估了某些高风速区域的风能潜力,设计者可能错失将风机布置在这些高收益区域的机会;反之,若数据高估了实际可利用风速,可能导致机位选择不当,实际发电量低于预期。在复杂山地,风能资源在空间上差异显著,一个选址不佳的测风塔可能“看不到”邻近山头更强的风,导致风机布局方案不够优化。研究案例表明,通过优化测风塔和风机的位置,可以使风场年发电量显著提高。例如前述某山地风场案例中,仅调整布局就增加了约10%的年发电量 (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram)。这说明测风塔选址影响了对高风速走廊的识别,进而影响风机排布的优化程度。此外,测风塔位置也影响微观选址调整:在施工前的微观选址阶段,常需要根据测风数据细化每台风机的精确点位(考虑局地地形、尾流等)。若测风塔恰好位于代表性区域,其数据可以用于微观选址模型的验证,帮助提高风机阵列布局的能量产出和载荷均衡。反之,若无代表性数据支撑,微观选址可能更依赖经验,增大风险。简而言之,测风塔选址质量越高,后续风机布局就越“对症下药”,整个风电场的设计优化程度和产出水平就越有保障。
综上所述,无论是风资源评估、计算模型验证,还是风机优化布局,测风塔的选址都扮演着至关重要的角色。一个科学合理的选址可以最大程度地降低不确定性、提高评估精度,为风电场的成功开发奠定基础;而不当的选址则可能在项目后期放大为经济损失或技术问题。因此,在风电场开发前期应投入足够重视和资源来优化测风塔选址,以提升项目后续各环节的可靠性和效率 ()。
5. 结论
复杂地形风电场的测风塔选址是一项系统性工作,需要综合考虑数据代表性和工程可行性等多重因素。通过梳理测风塔选址的目标原则,我们强调了测风数据代表性、全面反映风资源特征以及塔架安全稳固的重要性。在此基础上,分析了地形复杂度、主导风向、地表粗糙度、交通与施工条件等关键因素对选址决策的影响。其中,地形和风向决定了测风数据能否代表整个场区风况,粗糙度和障碍物关系到测风数据的准确性,交通施工则影响选址实施的可能性。
为应对复杂地形带来的挑战,我们介绍了多种选址方法:从经验主导的现场踏勘,到CFD数值模拟的定量辅助,再到GIS技术的可视化分析,以及多测风塔联合布设策略。经验选址提供初步指引,CFD和GIS提升了选址的科学严谨性,而多塔布局则保障了数据的全面覆盖和可靠性。特别是在山地丘陵地区,**“经验+模拟+多点测量”**的结合是优化测风方案的有效路径。
选址的质量直接关系到风资源评估的可靠性、数值模型的验证精度和风机阵列的优化设计。良好的测风塔选址能降低风电项目的不确定性,提高能源评估和设计的准确度,最终提升风电场的经济效益和运行安全。相反,不当的选址可能导致风资源低估或高估,增加后期调整成本。因此,在风电场前期开发中应高度重视测风塔的选址策略,充分利用国际最新研究成果和技术手段,不断优化复杂地形条件下的测风布局。
本报告通过参考Wind Energy、Renewable Energy、Applied Energy、Journal of Wind Engineering & Industrial Aerodynamics等期刊的最新研究 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library) (), 提出了复杂地形下测风塔选址的一套系统分析。实践中,应根据具体风电场的地形风况特征,灵活运用上述原则和方法,制定最优的测风塔布设方案,为风电场的成功开发运行提供坚实的数据支撑。
参考文献:
-
Zhang, Y., Zhou, S. (2017). Study on optimal site selection of a met mast in interconnected wind farm. The Journal of Engineering, (Dec 2017): 57–63 (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library) (Study on optimal site selection of a met mast in interconnected wind farm - Zhang - 2017 - The Journal of Engineering - Wiley Online Library).
-
Bechmann, A., et al. (2020). The most similar predictor – measurement locations for wind resource assessment. Wind Energy Science, 5, 1679–1688 () ().
-
MEASNET (2016). Evaluation of Site-Specific Wind Conditions – Version 2. MEASNET Site Assessment Guideline ().
-
Gravdahl, A. R. et al. (2002). Power prediction and siting – when the terrain gets rough. Proc. EWEC 2002 (Figure 4: WindSim simulation wind resource map) (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram) (Wind resource map with annual mean wind speed at 30 meters height,… | Download Scientific Diagram).
-
NYSERDA (2010). Wind Energy Toolkit: Wind Energy Site Selection. New York State Energy Research and Development Authority () ().
-
Ryu, G. et al. (2022). Atmospheric stability effects on offshore and coastal wind resource characteristics in South Korea. Renewable Energy, 187: 81–96 (Site photography of both meteorological masts. Top: HeMOSU-1 offshore… | Download Scientific Diagram).
-
Bingöl, F. et al. (2009). Conically scanning lidar error in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 97(5–6): 349–365.
-
Frank, H. et al. (2020). Multi-lidar wind resource mapping in complex terrain. Wind Energy Science, 5, 179–198 (Multi-lidar wind resource mapping in complex terrain - WES).