sin cos泰勒展开式

本文介绍了一个C++程序,使用泰勒级数的公式实现了sin(x)和cos(x)的计算,通过循环和指数运算,为角度输入计算对应的正弦或余弦值。
摘要由CSDN通过智能技术生成

 

任务描述

本关要求:编写一个c++程序,实现三角函数的计算。

相关知识
泰勒级数

公式: sin(x) = x – (x^3/3!) + (x^5/5!) – (x^7/7!) + …

cos(x) = 1 – (x^2/2!) + (x^4/4!) – (x^6/6!) + …

#include <iostream>
#include <cmath>
using namespace std;
int jc(int x){
	int s=1;
	for(int i=1;i<=x;i++) s*=i;
	return s;
}
double sin(int x){
	double s=0;
	int j=0;
	for(int i=1;i<=30;i+=2){
		int xs=pow(-1,j++);
		s+=(double)xs*pow(x,i)/jc(i);
//		cout<<j;
	}
	return s;
}
double cos(int x){
//void cos(int x){
	double s=0;
	int j=0;
	for(int i=0;i<=30;i+=2){
//		cout<<i<<endl;
		int xs=pow(-1,j++);
		s+=xs*(double)pow(x,i)/jc(i);
	}
	return s;
}
int main()
{
	int n,d;
	const double pi=3.1416;
	cin>>n>>d;
	double hd=2*pi*d/360;
	if(n==1){
		cout<<sin(hd);
	}
	else{
		cout<<cos(hd); 
	}

	
	return 0;
} 

### 回答1: C语言中的sincos函数是数学库中常用的三角函数。它们的实现涉及到数学的近似计算和算法设计。下面是对C语言sincos函数的简要实现: 1. 对于sin函数的实现,可以采用泰勒级数展开的方法。根据泰勒级数展开,sin函数可以表示为无穷级数:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...。根据此公,可以通过循环迭代,并求和计算sin(x)的近似值。 ```c double sin(double x) { double result = 0; double term = x; int sign = 1; int denominator = 1; for (int i = 1; i <= 10; i += 2) { result += sign * term; sign *= -1; term *= x * x / (denominator * (denominator + 1)); denominator += 2; } return result; } ``` 2. 对于cos函数的实现,可以利用sin函数的性质cos(x) = sin(pi/2 - x)。将x代入sin函数的实现中即可得到cos函数的近似值。 ```c double cos(double x) { double pi_over_2 = 3.14159 / 2; return sin(pi_over_2 - x); } ``` 以上是简化的实现示例。实际的数学库函数中,sincos函数的实现更加复杂,并且考虑了更多的近似算法和优化策略,以提高精度和计算效率。 ### 回答2: C语言中的数学库中定义了一些常用的数学函数,其中包括sin()和cos()函数。这两个函数分别用于计算给定角度的正弦值和余弦值。下面是关于这两个函数的简单实现方法: 1. 关于sin()函数的实现方法: 正弦函数是周期性的,因此可以利用其性质进行近似计算。以下是一种常见的近似算法,称为泰勒级数展开: - 首先将角度转换为弧度,因为C语言中的三角函数需要以弧度为单位的输入。 - 使用泰勒级数展开公,即sin(x) = x - (x^3)/3! + (x^5)/5! - ...,其中x为以弧度为单位的角度。 - 通过逐项相加,可以得到一个近似的sin()值。需要考虑泰勒级数的项数,可以根据所需精度进行调整。 2. 关于cos()函数的实现方法: 余弦函数与正弦函数具有相关性,因此可以利用正弦函数的实现来计算余弦函数: - 利用三角函数的关系cos(x) = sin(x + π/2)。 - 在计算sin(x)之前,将角度转换为以弧度为单位,然后利用sin()函数进行计算。 - 最后将所得结果进行调整,即sin(x + π/2)。 但是需要注意,这里介绍的是一种简单的近似算法,并不是最有效的方法。在实际应用中,可以使用更加高效的算法和数学库函数来计算sin()和cos()函数的准确值。 ### 回答3: C语言中的sincos函数是用来计算给定角度的正弦和余弦值的数学函数。这些函数通常由数学库提供。下面是简化版的sincos函数的实现思路。 首先,我们需要明确正弦和余弦函数的定义。正弦函数的定义是 sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...,其中!表示阶乘。余弦函数的定义是 cos(x) = 1 - (x^2)/2! + (x^4)/4! - (x^6)/6! + ...。 在实现sincos函数时,我们可以考虑使用泰勒级数展开来逼近函数的值。泰勒级数展开将函数表示为一个无限级数,并且通过截断级数的一部分来近似原始函数的值。 下面是sin函数的简化实现: ```c double mySin(double x) { double sum = 0.0; double term = x; double sign = 1.0; int i; for(i = 1; i <= 10; ++i) { sum += term; sign *= -1.0; term = (term * x * x) / ((2*i) * (2*i+1)); } return sum; } ``` 在这个简化的实现中,我们使用了10项级数展开来计算sin函数的值。term变量迭代表示级数中的每一项,sum变量用于累加结果。通过不断迭代计算term和sum的值,我们可以得到最终的sin函数结果。 类似地,我们也可以实现cos函数: ```c double myCos(double x) { double sum = 0.0; double term = 1.0; double sign = 1.0; int i; for(i = 1; i <= 10; ++i) { sum += term; sign *= -1.0; term = (term * x * x) / ((2*i-1) * (2*i)); } return sum; } ``` 在这个简化的实现中,我们同样使用了10项级数展开来计算cos函数的值。 需要注意的是,这只是一种简化的实现方,仅用于说明sincos函数的实现原理。实际上,sincos函数是由数学库以更精确更高效的方实现的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值