TMU:LLM在数学推理的性能与效率分析

在这里插入图片描述

📖标题:Benchmarking Large Language Models for Math Reasoning Tasks
🌐来源:arXiv, 2408.10839

摘要

🔸使用大语言模型(LLM)进行数学推理已成为相关研究的基石,展示了这些模型的智能,并通过其先进的性能实现了潜在的实际应用,例如在教育设置中。尽管有各种各样的数据集和上下文学习算法旨在提高LLMs自动解决数学问题的能力,但缺乏跨不同数据集的全面基准测试使得选择特定任务的合适模型变得复杂。
🔸在本项目中,我们提出了一个基准测试,公平地比较了七种最先进的上下文学习算法在四个强大的基础模型上跨五个广泛使用的数学数据集中解决数学问题的能力。此外,我们探讨了效率和性能之间的权衡,突出了LLMs在数学推理中的实际应用。
🔸我们的结果表明,像GPT-4o和LLaMA 3-70B这样的更大的基础模型可以独立于具体的提示策略解决数学推理问题,而对于较小的模型,上下文学习方法显着影响性能。此外,最佳提示取决于所选择的基础模型。我们开源我们的基准测试代码以支持未来研究中额外模型的集成。

🛎️文章简介

🔸研究问题:如何提高大语言模型(LLM)在数学推理任务中的性能和效率?
🔸主要贡献:论文提供了对不同大型语言模型在数学推理任务上的详细基准测试,并揭示了模型大小和提示策略对性能的影响。

📝重点思路

🔺相关工作

🔸多项调查从理论角度审视了LLM的数学推理,强调了普遍性和稳健性的缺失、复杂问题的挑战以及幻觉和可信度问题。
🔸标记化的影响、模型大小的重要性以及提示的敏感性,从而确定了LLM的不同最佳提示,并指出代数能力不能直接等同于数学推理能力。
🔸一般来说,较大的模型性能更好,闭源模型的表现明显优于开源模型,并且GPT-4是数学推理的总体最佳模型。

🔺论文方案

🔸对不同大小的模型(从小型到大型如GPT-4o和LLaMA 3-70B)进行实验,使用不同的提示策略(如CoT、Auto CoT、Zero-Shot CoT等)。
🔸通过生成多个结果并计算通过率(pass@k)来评估模型的稳定性。
🔸对每种方法的计算成本和时间消耗进行分析,以评估性能和资源消耗之间的权衡。

🔎分析总结

🔸大型模型(如GPT-4o和LLaMA 3-70B)在数学推理任务上表现更好,但成本和资源消耗更高。
🔸不同的提示策略对不同模型的性能有不同影响,如GPT-4o结合CoT表现最佳,而LLaMA 3模型使用Auto CoT效果最好。
🔸Zero-Shot CoT在GPT-3.5上表现出良好的性能和成本效益,尽管它需要调用基础模型两次。
🔸在GSM8K数据集上,GPT-4o结合Self-Consistency CoT始终优于其他方法和基础模型。
🔸简单数学选择GPT-3.5经济高效,高中数学可以用更先进的GPT-4o,数据敏感(如金融)可以使用LLaMA 3作为开源替代。

💡个人观点

论文通过详细的基准测试,揭示了模型大小和提示策略对LLM在数学推理任务上性能的影响,并提供了性能和资源消耗之间的最佳权衡策略。

附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值