平安:LLM结合知识图谱和网页检索的RAG方案

在这里插入图片描述

📖标题:WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs
🌐来源:arXiv, 2408.07611

摘要

大型语言模型(LLMs)在发展自适应智能代理方面做出了巨大贡献,并被视为实现人工通用智能(AGI)的重要途径。然而,LLMs容易产生事实上不正确的信息,并经常产生“幻觉”内容,这削弱了它们的可靠性,这对它们在现实场景中的部署构成了严峻挑战。通过将外部数据库和信息检索机制相结合,增强LLMs是一条有效的途径。为了解决上述挑战,我们提出了一种新的方法,称为WeKnow-RAG,它将Web搜索和知识图谱集成到“检索增强生成(RAG)”系统中。首先,通过将知识图谱的结构化表示与密集向量检索的灵活性相结合,提高LLM响应的准确性和可靠性。然后,WeKnow-RAG利用特定领域的知识图谱来满足各种查询和领域,通过使用稀疏和密集检索方法进行多阶段网页检索技术,从而提高对事实信息和复杂推理任务的性能。我们的方法有效平衡了信息检索的效率和准确性,从而提高了整个检索过程的效率。最后,我们还集成了一种自我评估机制,用于评估LLM生成的答案的可信度。我们的方法在广泛的离线实验和在线提交中证明了其卓越的有效性。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在生成内容时容易产生事实错误(幻觉)。
🔸主要贡献:论文提出了一种结合网络搜索和知识图谱的检索增强生成(RAG)系统,名为WeKnow-RAG,以提高LLM响应的准确性和可靠性。

📝重点思路

🔺相关工作

🔸为了提高LLM在问答任务中的准确性和可靠性,根据LLM的参数是否需要修改有以下两种不同技术路线。
🔸微调和校准(需要修改参数):对特定领域或任务的LLM进行微调,可以提高其准确性并减少幻觉反应。此外,校准模型以提供不确定性估计和响应可以帮助用户 评估生成信息的可靠性。
🔸外部知识整合(不需要修改参数):将外部知识源整合到LLM中,可以帮助增强其理解力并减少幻觉反应,这些来源可以是网页、数据库、 图谱、额外的LLM等。

🔺应用场景

🔸给定问题,要求LLM从外部来源检索的信息或直接从模型内化的知识来生成答案,理想情况下答案要包含有用信息并没有幻觉。
🔸外部来源包括包括候选网页以及知识图谱,并不保证存在答案信息。
🔸评估领域涵盖金融、体育、音乐、电影和开放,问题类型包括简单和比较、聚合、集合等七种复杂问题。

🔺论文方案

🔸WeKnow-RAG包括知识图谱工作流和网络搜索工作流,以解决端到端检索增强生成挑战。
🔸网页检索:包括网页内容解析、文档分块、多级检索和自我评估步骤。
🔸图谱检索:包括领域分类、查询生成、答案检索和后处理步骤。
🔸方案融合:提出了一个自适应框架,智能地结合基于知识图谱和基于网络的RAG方法,根据不同领域的信息变化率进行调整。

🔎分析总结

🔸论文方法在准确性和减少幻觉方面取得了显著的改进。
🔸图谱检索通过函数调用,从知识中提取特定信息,以最小的错误提供准确的答案。
🔸网页检索能获得更多相关信息,通过自我评估方法减少幻觉。

💡个人观点

论文的的核心是结合知识图谱和网络搜索,以提高LLM在动态信息环境中的准确性和可靠性。

附录

在这里插入图片描述

  • 25
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值