UNC:外部奖励优化LLM的agent推理

在这里插入图片描述

📖标题:MAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning
🌐来源:arXiv, 2409.12147

摘要

🔸大型语言模型(LLM)的推理可以通过测试时聚合策略来改善,即生成多个样本并在生成的样本中进行投票。虽然这些策略可以提高性能,但它们通常会达到饱和点。细化提供了一种替代方法,即使用LLM生成的反馈来提高解决方案的质量。然而,细化引入了三个关键挑战:(1)过度细化:均匀细化所有实例可能会过度纠正并降低总体性能。(2)无法定位和解决错误:LLM的自我纠正能力有限,难以识别和纠正自己的错误。(3)细化不足:决定需要多少次细化迭代是不容易的,过早停止可能会导致错误未被解决。
🔸为了解决这些问题,我们提出了MAgICoRe,通过将问题难度分类为简单或困难,使用粗粒度聚合解决简单问题,使用细粒度和迭代的多智能体细化解决困难问题,从而避免过度细化。为了改善错误定位,我们结合外部逐步奖励模型(RM)分数。此外,为了确保有效的细化,我们采用了三个智能体的多智能体循环:求解器,评审员(根据逐步RM分数生成有针对性的反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值