UNC:外部奖励优化LLM的agent推理

在这里插入图片描述

📖标题:MAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning
🌐来源:arXiv, 2409.12147

摘要

🔸大型语言模型(LLM)的推理可以通过测试时聚合策略来改善,即生成多个样本并在生成的样本中进行投票。虽然这些策略可以提高性能,但它们通常会达到饱和点。细化提供了一种替代方法,即使用LLM生成的反馈来提高解决方案的质量。然而,细化引入了三个关键挑战:(1)过度细化:均匀细化所有实例可能会过度纠正并降低总体性能。(2)无法定位和解决错误:LLM的自我纠正能力有限,难以识别和纠正自己的错误。(3)细化不足:决定需要多少次细化迭代是不容易的,过早停止可能会导致错误未被解决。
🔸为了解决这些问题,我们提出了MAgICoRe,通过将问题难度分类为简单或困难,使用粗粒度聚合解决简单问题,使用细粒度和迭代的多智能体细化解决困难问题,从而避免过度细化。为了改善错误定位,我们结合外部逐步奖励模型(RM)分数。此外,为了确保有效的细化,我们采用了三个智能体的多智能体循环:求解器,评审员(根据逐步RM分数生成有针对性的反馈),和细化器(整合反馈)。为了确保足够的细化,我们重新评估更新的解决方案,迭代地启动进一步的细化轮次。
🔸我们在Llama-3-8B和GPT-3.5上评估了MAgICoRe,并展示了其在5个数学数据集上的有效性。即使进行一次MAgICoRe迭代,也比Self-Consistency高出3.4%,比Best-of-k高出3.2%,比Self-Refine高出4.0%,同时使用不到一半的样本。与基线的迭代细化不同,MAgICoRe随着更多迭代而不断改进。最后,我们的消融实验突出了MAgICoRe的RM和多智能体通信的重要性。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在多步骤推理中难以准确定位和纠正错误,存在过度或不足的细化处理。
🔸主要贡献:论文提出了一个名为MAGICORE的框架,通过多代理系统、外部奖励模型和迭代精炼过程来提升推理任务的准确性和效率。

📝重点思路

🔺相关工作

🔸聚合改进推理:自我一致性(SC)生成推理链以获得答案集群,选择最常出现的答案作为最终预测,但为每个样本生成k个解决方案,成本高昂且不是最理想的容易饱和。
🔸基于LLM的验证和改进:过去的工作主要使用RM进行验证,另一些工作建议使用LLM本身作为验证者,但被质疑“自我评估”能力。
🔸基于LLM的多代理系统:探索如何在多代理系统中使用LLM,涉及代理的交互、协作和竞争,部分研究聚焦结构化辩论以细化和改进先前生成的方案。

🔺论文方案

🔸生成答案集群:使用LLM生成多个推理链,并使用外部奖励模型(全局奖励模型ORM和局部奖励模型PRM)对这些推理链进行评分。
🔸问题难度分类:根据评分结果将问题分类为简单或困难,对简单问题采用粗粒度聚合,对复杂问题采用细粒度、迭代的多代理细化。
🔸复杂问题改进:利用局部奖励模型的评分来帮助LLM定位可能错误的步骤,并提出一个由Solver、Reviewer和Refiner组成的多代理系统,分别负责生成初始解决方案、提供有针对性的反馈和改进解决方案。
🔸迭代优化:通过迭代审查-精炼过程,根据每次迭代后的最终答案质量和熵值来决定是否停止迭代。

🔎分析总结

🔸引入外部奖励模型进行精炼是必要的,因为仅依赖LLM自身难以确定何时需要精炼,而经过训练的外部奖励模型在这方面表现更有效。
🔸选择性细化不仅避免了过度纠正,还通过有效分配更多资源给更难的问题,提高了整体性能。
🔸使用步骤评分来指导整个精炼过程的反馈,能够显著提高性能。
🔸多代理系统中Reviewer和Refiner之间的通信进一步提升了精炼效果。

💡个人观点

论文的核心是通过外部奖励选择性的细化推理,通过多代理设置和迭代反馈机制提高性能。

附录

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值