1. 二分法查找元素
#include "stdafx.h"
#include <iostream>
#include<string>
#include<vector>
using namespace std;
//二分法寻找指定元素在vector的位置
//注意二分法中的元素要事先排序
template<typename T>
int find_element(vector<T>&ver, T num)
{
auto beg= ver.begin();
auto beg_temp = beg;
auto end= ver.end();
auto mid = beg + (end - beg) / 2;
while (beg != end && *mid != num)
{
if (num < *mid) end = mid;
else beg = mid + 1;
mid = beg + (end - beg) / 2;
}
//返回所处的位置,注意,无法返回mid,因为是迭代器,所以返回mid和最开始的位置之差,注意mid-beg是错误的。
return mid - beg_temp;
}
int main()
{
vector<int> ver = { 1,2,3,4,5,6,7,8,9,10 };
int locate;
locate=find_element(ver, 4);
cout << "locate:" << locate<<endl;
system("pause");
return 0;
}
1. auto变量是自动变量,用于推断变量的类型,必须赋值初值.
2. vector< T >&ver,表示ver为一个引用,引用的内容是vector这个容器内部存放的整型数据
2. vector数组加或不加引用&有很大区别
vector < int > a;
vector容器:不加引用&无法改变原vector的值,只是拷贝了一个副本
vector中的数组名v不是指针(地址),跟普通数组名是不同
#include <iostream>
#include <vector>
using namespace std;
// vector容器:** 不加引用无法改变原vector的值 **
// vector中的** 数组名v不是指针,跟普通数组名不同**
// 不加引用&
void test1(vector<int> v) {
v[0] = 27;
}
// 加引用&
void test2(vector<int> &v) {
v[0] = 27;
}
int main()
{
int a[] = {1, 2, 3, 4, 5};
vector<int> v({36,0,834,29,13});
test1(v); // v不是指针,跟普通数组名不同
cout << "after test1 v[0] = " << v[0] << endl; // 36
test2(v);
cout << "after test2 v[0] = " << v[0] << endl; // 27
return 0;
}
3. auto变量使用条件:
二分法
既然暴力解法的时间复杂度是O(n),就要尝试一下使用二分查找法。
!35_搜索插入位置4
大家注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件。
以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。
同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下表可能不是唯一的。
大体讲解一下二分法的思路,这里来举一个例子,例如在这个数组中,使用二分法寻找元素为5的位置,并返回其下标。
!35_搜索插入位置5
二分查找涉及的很多的边界条件,逻辑比较简单,就是写不好。
相信很多同学对二分查找法中边界条件处理不好。
例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?
这里弄不清楚主要是因为对区间的定义没有想清楚,这就是不变量。
要在二分查找的过程中,保持不变量,这也就是循环不变量 (感兴趣的同学可以查一查)。
二分法的两种写法(易错点:半闭与全闭区间的不同写法)
二分法第一种写法
以这道题目来举例,以下的代码中定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要)。
这就决定了这个二分法的代码如何去写,大家看如下代码:
大家要仔细看注释,思考为什么要写while(left <= right), 为什么要写right = middle - 1。
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle;
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0, -1]
// 目标值等于数组中某一个元素 return middle;
// 目标值插入数组中的位置 [left, right],return right + 1
// 目标值在数组所有元素之后的情况 [left, right], return right + 1
return right + 1;
}
};
时间复杂度:O(logn) 时间复杂度:O(1)
效率如下: !35_搜索插入位置2
二分法第二种写法
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) 。
那么二分法的边界处理方式则截然不同。
不变量是[left, right)的区间,如下代码可以看出是如何在循环中坚持不变量的。
大家要仔细看注释,思考为什么要写while (left < right), 为什么要写right = middle。
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int n = nums.size();
int left = 0;
int right = n; // 定义target在左闭右开的区间里,[left, right) target
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在 [middle+1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值的情况,直接返回下标
}
}
// 分别处理如下四种情况
// 目标值在数组所有元素之前 [0,0)
// 目标值等于数组中某一个元素 return middle
// 目标值插入数组中的位置 [left, right) ,return right 即可
// 目标值在数组所有元素之后的情况 [left, right),return right 即可
return right;
}
};
时间复杂度:O(logn) 时间复杂度:O(1)
总结
希望通过这道题目,大家会发现平时写二分法,为什么总写不好,就是因为对区间定义不清楚。
确定要查找的区间到底是左闭右开[left, right),还是左闭又闭[left, right],这就是不变量。
然后在二分查找的循环中,坚持循环不变量的原则,很多细节问题,自然会知道如何处理了。
循序渐进学算法,认准「代码随想录」,Carl手把手带你过关斩将!