二分法查找vector中元素

本文介绍了二分法查找元素在有序vector中的应用,重点讲解了auto变量的使用,vector引用的区别,以及二分法的两种写法及其边界条件处理。通过实例演示和易错点剖析,帮助读者理解区间定义和循环不变量在算法中的关键作用。
摘要由CSDN通过智能技术生成

1. 二分法查找元素

#include "stdafx.h"
#include <iostream>
#include<string>
#include<vector>
using namespace std;
 
//二分法寻找指定元素在vector的位置
//注意二分法中的元素要事先排序
template<typename T>
int find_element(vector<T>&ver, T num)
{
	auto beg= ver.begin();
	auto beg_temp = beg;
	auto end= ver.end();
	auto mid = beg + (end - beg) / 2;
	while (beg != end && *mid != num)
	{
		if (num < *mid) end = mid;
		else beg = mid + 1;
		mid = beg + (end - beg) / 2;
	}
	//返回所处的位置,注意,无法返回mid,因为是迭代器,所以返回mid和最开始的位置之差,注意mid-beg是错误的。
	return mid - beg_temp;
}
int main()
{
	vector<int> ver = { 1,2,3,4,5,6,7,8,9,10 };
	int locate;
	locate=find_element(ver, 4);
	cout << "locate:" << locate<<endl;
	system("pause");
	return 0;
}

1. auto变量是自动变量,用于推断变量的类型,必须赋值初值.
2. vector< T >&ver,表示ver为一个引用,引用的内容是vector这个容器内部存放的整型数据

2. vector数组加或不加引用&有很大区别

vector < int > a;

vector容器:不加引用&无法改变原vector的值,只是拷贝了一个副本
vector中的数组名v不是指针(地址),跟普通数组名是不同

#include <iostream>
#include <vector>
 
using namespace std;
 
// vector容器:** 不加引用无法改变原vector的值 **
// vector中的** 数组名v不是指针,跟普通数组名不同**

// 不加引用&
void test1(vector<int> v) { 
    v[0] = 27; 
}

// 加引用&
void test2(vector<int> &v) { 
    v[0] = 27; 
}

int main()
{
  int a[] = {1, 2, 3, 4, 5};
  vector<int> v({36,0,834,29,13});
  test1(v); // v不是指针,跟普通数组名不同
  cout << "after test1 v[0] = " << v[0] << endl; // 36
  
  test2(v); 
  cout << "after test2 v[0] = " << v[0] << endl; // 27
 
  return 0;
}

3. auto变量使用条件:

在这里插入图片描述
二分法

既然暴力解法的时间复杂度是O(n),就要尝试一下使用二分查找法。

!35_搜索插入位置4

大家注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件。

以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。

同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下表可能不是唯一的。

大体讲解一下二分法的思路,这里来举一个例子,例如在这个数组中,使用二分法寻找元素为5的位置,并返回其下标。

!35_搜索插入位置5

二分查找涉及的很多的边界条件,逻辑比较简单,就是写不好。

相信很多同学对二分查找法中边界条件处理不好。

例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

这里弄不清楚主要是因为对区间的定义没有想清楚,这就是不变量

要在二分查找的过程中,保持不变量,这也就是循环不变量 (感兴趣的同学可以查一查)。

二分法的两种写法(易错点:半闭与全闭区间的不同写法)

二分法第一种写法

以这道题目来举例,以下的代码中定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要)

这就决定了这个二分法的代码如何去写,大家看如下代码:

大家要仔细看注释,思考为什么要写while(left <= right), 为什么要写right = middle - 1

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int n = nums.size();
        int left = 0;
        int right = n - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle;
            }
        }
        // 分别处理如下四种情况
        // 目标值在数组所有元素之前  [0, -1]
        // 目标值等于数组中某一个元素  return middle;
        // 目标值插入数组中的位置 [left, right],return  right + 1
        // 目标值在数组所有元素之后的情况 [left, right], return right + 1
        return right + 1;
    }
};

时间复杂度:O(logn) 时间复杂度:O(1)

效率如下: !35_搜索插入位置2

二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) 。

那么二分法的边界处理方式则截然不同。

不变量是[left, right)的区间,如下代码可以看出是如何在循环中坚持不变量的。

大家要仔细看注释,思考为什么要写while (left < right), 为什么要写right = middle

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int n = nums.size();
        int left = 0;
        int right = n; // 定义target在左闭右开的区间里,[left, right)  target
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在 [middle+1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值的情况,直接返回下标
            }
        }
        // 分别处理如下四种情况
        // 目标值在数组所有元素之前 [0,0)
        // 目标值等于数组中某一个元素 return middle
        // 目标值插入数组中的位置 [left, right) ,return right 即可
        // 目标值在数组所有元素之后的情况 [left, right),return right 即可
        return right;
    }
};

时间复杂度:O(logn) 时间复杂度:O(1)

总结

希望通过这道题目,大家会发现平时写二分法,为什么总写不好,就是因为对区间定义不清楚。

确定要查找的区间到底是左闭右开[left, right),还是左闭又闭[left, right],这就是不变量。

然后在二分查找的循环中,坚持循环不变量的原则,很多细节问题,自然会知道如何处理了。

循序渐进学算法,认准「代码随想录」,Carl手把手带你过关斩将!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值