一、前言
随着互联网技术以及社会经济等的高速发展,教育行业迎来了人工智能技术的蓬勃发展,而近年来随着教育信息化的不断推进,智能教育成为国家的重要战略之一。尤其在经过新冠疫情之后,社会对智能在线教育的迫切需求,使得对教科书、习题册等文档的自动分析成为研究的热点。其中的文档图像分析与识别技术被广泛应用在人们生活的方方面面,比如银行票据的自动分析处理、快递运单的自动识别、教科书的分析与识别、古籍文稿的分析与理解、数字档案、数字图书馆等等,极大地提高了信息的检索、处理、传播速率。总之,文档图像分析与识别技术的出现和发展极大地方便了人们的生活,也极大地促进了我们的社会向智能化、数字化、信息化发展。
基于此,本项目跟随Aidlux训练营的刘老师,利用YOLOv8模型以及DBNet算法,进行版面元素检测及文本行识别,并最终基于AidLux平台,利用已经闲置已久的小米cc9e手机的算力,实现到了PDF转WORD功能的部署。
二、环境配置
2.1 AidLux简介
AidLux是一个智能物联网(AIoT)应用开发和部署平台,构建在ARM硬件上,基于创新性跨Android/鸿蒙 + Linux融合系统环境。简单来说,AidLux提供了一种简洁而高效的方式,用于编写、训练和测试模型,并将其应用到不同形态的设备上。
通常情况下,我们在编写和测试模型时使用的是Linux或Windows系统。然而,当将模型应用到实际场景时,我们常常会遇到几种不同的设备形态,如GPU服务器、嵌入式设备(如Android手机、人脸识别闸机)和边缘设备。其中,Android嵌入式设备的底层芯片通常采用ARM架构,而Linux底层也是基于ARM架构开发的,同时Android又是基于Linux内核的操作系统,因此它们可以共享Linux内核。基于这种背景,AidLux提供了一种从底层开发应用系统的方法,同时提供原生Android和原生Linux的使用体验。
2.2 手机安装AidLux
本项目需要利用安卓手机下载并安装AidLux,在应用市场查找然后下载安装即可。如图2.1所示
图2.1 应用市场中的AidLux
安装完成后, 打开手机端的AidLux应用。第一次进入时,应用会进行初始化设置。完成初始化后,进入系统登录页面。在这一步,建议使用手机进行注册,当然也可以直接点击“我已阅读并同意”并跳过登录步骤。一旦登录成功,进入主页面后,可以点击左上角的红色叉号,关闭说明页面。之后可以点击页面最上方的 Cloud_ip,将界面映射到电脑上进行之后的操作.如图2.2所示。
图2.2 AidLux手机端主界面
本项目在这里是http://192.168.0.103:8000,如图2.3所示。在电脑端浏览器中输入链接后即可进入主界面,如图2.4所示,其中,此处的默认密码为aidlux 。
图2.3 AidLux的Cloud_ip
图2.4 AidLux的电脑端主界面
2.3 VScode远程连接调试AidLux
首先要下载VScode:点击官网https://code.visualstudio.com/,选择Download按钮进行下载,下载后根据提示一直进行安装,安装完成后需要安装插件Remote SSH:点击VScode左侧的输入Extensions“Remote针对跳出的Remote-SSH,点击安装,如图2.5所示。
图2.5 安装Remote-SSH
之后进行远程连接调试:①点击"Remote Explorer",②点击左下角选择“Connect to Host”,③再选择“Configure SSH Hosts”,如图2.6所示。
图2.6 VScode远程连接AidLux
然后对于跳出的弹窗,再选择第一个config
输入连接信息,需要注意的是这里的Host Name填写自己对应的AidLux里面Cloud_ip的地址。同时Port统一为9022,User均为root.保存后,在左侧会生成一个SSH服务器,鼠标放上后,会跳出一个“Connect to Host in New Window",之后再跳出密码框输入“aidlux”进行连接(注意此处密码均为aidlux),右下角显示SSH AidLux时,表示已经连接成功。
三 案例分析
3.1 版面元素检测
本部分利用Yolov8算法(