【看出海】亚马逊云科技助力沐瞳科技实现高效游戏运营

8b07624ead7029bc71ec14045c7697fb.jpeg

关键字: [出海日城市巡展, Claude, 生成式Ai, 游戏体验, 游戏运营, 内容审核, 社区分析]

本文字数: 2100, 阅读完需: 10 分钟

导读

在这场演讲中,王睿老师分享了生成式AI在游戏行业的创新应用,尤其是在游戏运营方面。她介绍了生成式AI在素材生成、平台运营、效率提升和游戏智能体等方面的应用案例。重点讲解了亚马逊云科技与游戏公司牧童合作,利用生成式AI进行舆情分析和辱骂识别的实践案例,展示了生成式AI如何提高游戏运营效率和质量。同时,她还对Anthropic公司的Claude大语言模型进行了深入解析,阐述了其在安全性、多模态能力和上下文长度等方面的优势。

演讲精华

以下是小编为您整理的本次演讲的精华,共1800字,阅读时间大约是9分钟。

生成式人工智能(Generative AI)这个概念自2022年10月份左右开始出现,当时Stable Diffusion生成了一张宇航员骑着马在月球上的图像,将这个词带入了普通人的视野。时至今日,已有一年多的发展时间,相信在座的各位对生成式AI给生活和工作带来的影响都有深刻体会。贝恩公司的一份报告指出,生成式AI可能是迄今为止最具颠覆性的创新,它或多或少会影响80%以上的行业,尤其是IT行业最为显著,对工作效率和质量的提升有很大帮助。

生成式AI在游戏行业具体有哪些应用?主要有四个方向。第一是素材生成,无论是游戏内的美术素材、文字素材,还是NPC对话、世界观、剧情等,AI都可以帮助生成。第二是平台运营,后文会详细讲到,AI可以在游戏运营过程中发挥作用。第三是效率提升,相信大家都有深刻体会。第四是游戏智能体,很多公司会在游戏内置智能NPC,根据与玩家的互动情况做出反应。

在平台运营方面,目前使用较多的有以下几个场景。第一是内容图片、文字的审核,比如审核玩家上传的图片或社区互动内容是否涉黄涉暴或存在违规情况。传统做法是使用专用模型进行审核,但训练和迭代这种模型是一个复杂过程。使用生成AI可以解放想象力,只需提供需求和数据,就可以让AI帮助完成审核工作。

第二是社区运营分析。有这样一个案例,玩家上传了一张图片,可以把图片交给生成AI的大语言模型,利用其多模态能力分析图片内容并打标签,判断是否存在不合规情况。然后再用另一个大语言模型review生成的内容,确保合理性,这是一个简单的三步流程。

对于效率提升,相信在座的游戏公司都或多或少在企业内部接入了生成AI大语言模型的API,用于提高效率。这里介绍一个远光A4游戏的案例,这是一款FPS大逃杀游戏。该项目组在各种工作场景中尝试使用生成AI提高效率,主要包括飞书机器人FAQ助手和用户体验分析。

飞书机器人的作用是,玩家可以在飞书上使用斜杠命令,机器人会执行很多命令帮助查询游戏内数据,相当于一个交互式命令行工具。但由于命令种类繁多,对新人来说记住每个命令的作用和参数是件很麻烦的事。接入大语言模型后,只需告诉它每个命令的功能和参数,当需要查询某些数据时,就可以让它生成相应的命令并执行,无需记住那些繁琐的命令。

FAQ助手是将公司内部的流程规范等数据存储在向量数据库中,通过向量召回的方式结合大语言模型的能力,为公司构建一个FAQ功能,无需专职人员回答。

网页生成助手则是利用大语言模型生成运营活动网页的前端代码,一个实习生加上AI就可以完成这项工作,实习生可能最终也不再需要。

接下来介绍一个游戏智能体的案例。很多公司会在游戏内置智能NPC,根据与玩家的互动亲密度来接受或拒绝玩家的邀约。一家客户做的是AI情感陪伴,可以通过设定性格、偏好、背景等来定制一个全天候的AI情感助手。上线时就有超过10万用户,说明这个市场前景广阔。

要将生成式AI融入自己的平台或工具,需要做以下几步:首先确定应用场景,然后选择合适的基础模型(Foundation Model)。除了大家熟知的GPT系列外,还有Anthropic公司最新推出的Claude模型,在多个基准测试中表现均超过了GPT-4。

Anthropic这个单词的意思是”人类的”或”与人类相关的”,反映了该公司希望构建以人类利益为核心的安全可靠AI助手的愿景。该公司的创始团队多数来自OpenAI,包括前OpenAI研发副总裁、负责安全的副总裁(为兄妹关系)、负责GPT-3开发的前CTO等核心人物。经过140亿美元的投资后,Anthropic发展迅猛,从2021年成立到2024年已推出爆火的Claude模型。

Claude共有三个规格:Haiku(诗歌)、Somi(十四行诗)和Opus(杰作),能力由弱至强。在多个本科生及研究生水平的基准测试中,Claude的表现都超过了GPT-4。值得重点强调的是,Claude在安全性方面也是业界领先的。

很多人都尝试过”越狱”GPT-4,让它生成一些有害内容,比如Windows激活码或黑客攻击命令。GPT-4在多次尝试后有90%以上的概率会生成这些内容。但从Claude 2开始,它就无法生成任何有害内容,这得益于Anthropic前OpenAI安全副总裁的贡献。因此,在亚马逊云服务上使用Claude,安全性是有保证的。

除了安全性,Claude还有多模态能力的优势。所谓多模态,是指它不仅能识别文字,还能分析图像、表格等非结构化数据。在一些基准测试中,Claude的视觉能力也超过了GPT-4。比如给它一张包含表格的报告,问某国家年轻人和老年人上网比例的差距,它就会自动分析表格数据并作出计算。再比如给它一张白板照片,它能准确提取上面的所有文字信息。

另一个突出优势是200k的超长上下文能力,相当于475页PDF。你可以把大量企业内部文档作为上下文喂给它,让它基于这些文档内容进行生成,做到”大海捞针”。Claude在这方面的召回率接近100%。

除了智能化程度更高,Claude的推理速度也更快,即使最小规格的Haiku相比GPT-3.5也有一定速度优势。同时,Claude的成本也更低。

接下来分享一个Claude在游戏公司牧童(Moonton)的应用案例。牧童是字节旗下的游戏公司,其核心产品MLVB是东南亚的国民级手游,相当于中国的王者荣耀。牧童与亚马逊云科技有多年合作,在AI领域的合作也让它们在游戏运营能力上获得极大提升。

今天重点介绍两个场景:舆情分析和辱骂识别。所谓舆情分析,就是分析玩家对游戏的评价,比如新英雄的接受程度如何、优缺点在哪里等。以前这个工作流程很冗长,需要多个组件配合,人工从各论坛抓取数据并分析。有了大语言模型后,可以把这些复杂流程用AI来高效低成本地解决。

牧童每天可能有一万多条玩家评论,如果只抽样检查效果不佳,因此构建了这样一个架构进行全量舆论分析:首先从各平台抓取数据,然后用小型模型Haiku进行打标,把结果存入Open Search中。基于这些标签和数据,就可以分析某月的游戏评价曲线、新英雄的好评与差评等。

之所以先用小模型打标,是因为如果全数据直接喂给大模型会浪费资源。Haiku打标后,大模型只需基于标签做分析,更加经济高效。

另一个场景是辱骂识别。在游戏过程中,玩家之间可能会因为暴躁情绪而相互辱骂,如果没有及时发现并惩罚,会导致玩家流失。传统做法是从聊天记录中匹配关键词库,如果匹配到就直接判罚;如果没匹配到但有玩家举报,则需要100多人的客服团队人工review,成本高且低效。

有了大语言模型后,可以将关键词匹配这一步用AI替代。具体做法是,先用关键词库过滤一部分明确的辱骂内容,对于其余部分,喂给大模型让它评估是否构成辱骂,给出置信度分数。对于置信度高的,直接判罚;对于置信度一般的,再给客服团队人工review,可以极大节省人力并提高准确率。

如果游戏公司想构建自己的辱骂识别系统,这是一个很好的架构:首先收集玩家在论坛、游戏内的语料,用现有的屏蔽词库过滤一部分;对于未过滤的部分,存入Open Search,再用大模型评估辱骂程度;评估出的辱骂内容则反向更新到屏蔽词库,形成一个闭环,避免重复评估。

最后是牧童的一组测试结果:与GPT-3相比,Claude不仅推理时间大幅缩短,在辱骂识别场景下的准确率也更高。

总的来说,Claude模型有三大优势:智能化程度更高、推理速度更快、支持多模态和超长上下文,同时成本也更低。通过上述案例可以看出,Claude已在游戏行业的多个环节发挥了重要作用,为游戏公司带来了效率的极大提升。

总结

在这场精彩的演讲中,王睿老师从生成式AI的发展历程出发,深入探讨了其在游戏行业的创新应用。她首先回顾了生成式AI的兴起,强调其对80%以上行业产生了颠覆性影响,尤其是IT行业。接着,她分享了生成式AI在游戏行业的四大应用方向:素材生成、平台运营、效率提升和游戏智能体。

王睿老师重点介绍了平台运营方面的案例,包括内容审核、社区运营分析、FAQ专家和网页生成助手等,展示了生成式AI如何提高游戏运营效率。她还分享了游戏智能体的探索,如AI情感陪伴等前沿应用。

随后,王睿老师深入解析了Anthropic公司的Claude模型,强调其在安全性、多模态能力和上下文长度等方面的优势。她通过具体案例展示了Claude在代码生成、文本续写等领域的卓越表现。

最后,王睿老师分享了亚马逊云科技与穆童游戏公司的合作案例,详细阐述了如何利用Claude模型进行舆情分析和辱骂识别,提高游戏运营质量。她呼吁游戏公司解放想象力,与生成式AI深度融合,共同推动行业创新发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值