推进物理AI:NVIDIA与亚马逊助力下一代机器人技术
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, NVIDIA Omniverse, Physical Ai, Simulation, Robot Learning, Nvidia Omniverse, Isaac Lab]
导读
机器人技术的未来在于物理人工智能——能够在现实世界中自主执行复杂任务的机器人。为了应对这一重大挑战,加速人工智能驱动的机器人开发至关重要。这需要采用模拟优先的方法来安全高效地训练这些先进系统。在这个面向开发者的会议中,您将了解如何使用Isaac Lab来快速推进您的机器人项目。Isaac Lab是一个开源的模块化框架,专为强化学习而设计。通过将Isaac Lab与GPU加速的Amazon EC2实例上的Amazon Batch集成,您可以利用可扩展的云资源,在模拟环境中针对全面的策略集快速训练机器人。本次演讲由亚马逊云科技合作伙伴NVIDIA为您带来。
演讲精华
以下是小编为您整理的本次演讲的精华。
2024年亚马逊云科技 re:Invent大会的“推进物理人工智能:NVIDIA和Amazon推动下一代机器人技术”会议拉开帷幕,由亚马逊云科技专业服务部门的首席物联网和机器人架构师Sean Kirby向与会者致以热烈欢迎。他的同事Rishab来自NVIDIA,Abishek来自亚马逊云科技,他们共同揭示了将人工智能能力融入物理世界的尖端技术。
Sean Kirby首先阐释了物理人工智能的概念,这是一种将人工智能与有形世界无缝融合的范式。这种融合在机器人、自动驾驶汽车、工业机械手和机器人操作基础设施等多个领域都有应用。为了说明物理人工智能的深远影响,他举例说明了亚马逊的Robins机器人每天都能精准地移动数十亿个包裹,这需要相当大的物理智能来处理从精致的气泡包装到长方形盒子等各种各样的包裹,其中的内容物可能会意外移位。这些机器人以惊人的速度完成了这项艰巨的任务,确保了每个包裹的完整性。
Sean Kirby进一步强调,像ANYbotics开发的ANYmal这样的机器人已经被训练执行极限运动,这是一项即使对最优秀的人类运动员来说也是极具挑战的体能活动。在这场技术革命的前沿,NVIDIA的Groot是一个机器人物理智能开发平台,旨在促进人形机器人上的物理人工智能创建。这些具有人形外形的机器人非常适合在为人类精心打造的世界中执行各种任务。
虽然大型语言模型已经引发了生成式人工智能的“大爆炸”,但Sean Kirby敏锐地观察到,物理人工智能尚未经历自己的变革时刻。然而,他对本次会议分享的工具和方法能够让与会者成为推动这场即将到来的物理人工智能爆炸的催化剂,将这一领域推向前所未有的高度充满信心。
Sean Kirby阐述了物理人工智能带来的切实好处,其中最主要的是提高生产力和效率。正如亚马逊的Robins机器人所证明的那样,物理人工智能不仅可以被训练来简化包裹分拣等单调重复的任务,而且可以以惊人的速度完成这些任务,同时保持所需的质量控制和一致性,以便在免费送货的情况下实现数百万种不同商品的当日送达。
此外,物理人工智能可以被训练去执行危险环境中的危险任务,如矿井或灾难现场,从而保护人类工人免受伤害。与赋予生成式人工智能其卓越能力的转换器模型类似,配备多模态模型的物理机器人和机器可以被训练以实现通用人工智能,使它们能够解决各种问题,甚至是从未遇到过的问题。
深入探讨物理人工智能在各个行业的具体应用和好处,Sean Kirby阐述了灵巧性的提高将如何使机器人能够承担更多种类的制造任务,作为协作机器人(cobot)协助人类从事装配到质量检查等各种任务。像亚马逊这样的公司已经在使用物理人工智能系统,如自动导航机器人和机器臂,来简化物流运营,使这些系统能够在仓库中导航、避开障碍物、拣选和包装物品,并优化库存管理。
在医疗保健领域,物理人工智能前景广阔,最小侵入性机器人正在被训练执行诸如穿针引线和完美缝合等精细任务。此外,这些机器人还可以作为助手,帮助残障人士,感知和响应患者的渐进式物理治疗需求,甚至在人工帮助无法及时到位时充当护理助手和远程患者监控器。此外,机器人还被部署在医疗保健环境中执行清洁和消毒等关键任务。
物理人工智能的应用还扩展到农业领域,机器人被用于精准农业任务,包括作物监测、自动收获和牲畜管理。例如,John Deere’s的See & Spray解决方案可以将除草剂使用量减少三分之二,因为它可以精确定位需要处理的杂草。
物理人工智能还被用于探索各种环境,从管道内部到海洋深处,甚至核电站。
在回答如何开发能够完成如此非凡壮举的物理人工智能的关键问题时,Sean Kirby强调了模拟的关键作用。在实体硬件上开发先进的机器人系统是一项耗时、昂贵且可能存在危险的工作。然而,在模拟世界中,数百甚至数千个机器人可以同时接受训练,每个机器人的执行速度都远远超过现实世界中的同类,同时它们可以在近乎无限种类的合成、逼真的环境中进行测试,这些环境具有无尽的变化。这种方法不仅加快了产品开发,而且还能实现更彻底的测试覆盖,从而提高物理人工智能的质量。
为了证明模拟的深远影响,Sean Kirby举了各个行业的许多例子。例如,Multiply Labs利用模拟来实现通过机器臂创建的个性化药丸包装,将他们的产品开发生命周期缩短了整整一年,并将发布节奏从数周加快到每天进行多次经过彻底测试的发布。
同样,制造食品服务等应用机器人的Miso Robotics也采用模拟来加快其开发生命周期,并几乎每天测试软件的长期性和新功能对客户的影响。值得注意的是,iRobot已经将他们的更新和新产品发布的测试量增加了20倍,而且这一壮举只用了几个小时而不是几天。
在亚马逊机器人部门自己的物理人工智能项目中,世界上最大的移动工业机器人车队已经制造并部署。这个车队的最新成员Proteus是亚马逊的第一款全自动机器人,负责在配送中心内举起和移动装有物品和包裹的箱子。负责Proteus的团队利用了本次会议将广泛讨论的NVIDIA Omniverse平台,创建了逼真的模拟,加快了在各个配送中心的部署。其中一个应用涉及读取标记,以便机器人确定自身位置,在Omniverse中使用模拟将这一功能的开发时间从数月缩短到仅几天。此外,模拟还被用于加快基于多传感器融合的下一代应用的开发,以实现整个Proteus机器人车队的自主运行。
虽然物理人工智能的潜在好处是不可否认的,但Sean Kirby承认仍然存在艰巨的挑战。仅仅设置一个训练和模拟环境就可能需要数月时间,包括采购硬件、安装操作系统和技术栈、配置模拟框架、模型、模拟器、训练脚本、评估工具、可视化工具以及许多其他组件。这个过程往往需要克服陡峭的学习曲线,并解决大型地理分布式组织在利用标准化工具和相互建立成果时的一致性问题。
此外,训练和微调一些用于复杂任务的物理人工智能模型是一项极其耗时和资源密集型的工作。除非一个组织拥有大量并行的物理人工智能项目,否则他们可能不得不过度配置硬件资源,导致长期资源利用率不佳。更糟糕的是,组织可能会面临资源争用的情况,从而减慢产品开发生命周期,延迟新解决方案的上市时间。
认识到这些艰巨挑战,Sean Kirby给出了一线希望,即亚马逊云科技云上的NVIDIA Omniverse平台可以解决这些障碍,释放物理人工智能的巨大潜力。这个解决方案提供了经过精心策划的、随时可用的容器,其中包含逼真的模拟和物理精确的模型,可以部署在Amazon Batch上,并跨多个节点进行扩展,每个节点都配备了多个NVIDIA GPU。这些节点中的每一个都能够以极快的速度模拟数千个机器人在数百个不同的虚拟环境中运行,让与会者成为物理人工智能革命的一部分。
在这个时候,Sean Kirby将演讲权移交给来自NVIDIA的同事Rishab,他将深入探讨非凡的NVIDIA Omniverse和Isaac Lab工具。
Rishab开始了他的演讲,回顾了机器人编程中固有的传统复杂性。即使是看似简单的任务,如制造仓库中的装配线操作或拾取放置操作,编程机器人执行这些任务也一直是一项复杂的工作。这种复杂性源于一旦机器人被编程执行特定任务,它就缺乏适应不同尺寸或环境的可扩展性。例如,如果一个工业机械臂被编程在装配小型子模块时拾取和放置一个组件,任何对路径或任务的改变都需要重新编程机器人,然后进行大量测试和验证,以确保其能够在修改后的环境中执行新任务。
跨不同环境缺乏可扩展性一直是机器人领域的一个长期挑战。即使机器人被编程从A点导航到B点,相同的导航算法可能不适用于四足机器人或人形机器人,需要对整个过程进行重大修改。因此,创建机器人的整个训练和测试流程,包括获取必要的数据集,成为一项复杂繁琐的工作,需要根据特定的任务和所使用的机器人对许多组件进行调整和调整。
Rishab认为,机器人学习有望简化这一过程,强化学习和模仿学习的进步使机器人能够更有效地学习和执行任务。然而,在现实世界中实现这些技术是一项复杂的工作,类似于大型语言模型等生成式人工智能模型所面临的挑战。虽然这些模型在互联网规模上训练了大量数据,使它们能够智能地理解并提供有价值的见解、提取摘要和响应创造性提示,但它们并不直接与物理世界中的对象进行交互或驱动。
生成式人工智能和物理人工智能之间的这种区别凸显了后者更高的复杂性,因为它需要驱动机器人并在现实世界中执行任务,这是一个无法仅通过数据收集来规避的挑战。Rishab通过强化学习的概念来阐述这一点,在强化学习中,机器人通过反复试验来学习执行简单任务。例如,如果目标是让机器人拿起放在桌子上的立方体,最初机器人对立方体或环境一无所知。它将执行随机动作,某些动作会得到奖励,从而逐渐使机器人学会如何完成拿起立方体的特定任务。
然而,在现实世界中实现这一过程可能是乏味且潜在危险的,尤其是在处理昂贵的机器人时。例如,教一个四足机器人行走最初会涉及机器人摔倒和执行随机动作,因为它对任务一无所知。使用昂贵的实体机器人执行此类训练过程将是不切实际且可能造成损坏的。
正是在这一时刻,模拟成为机器人工作流程中一个至关重要的组成部分。Rishab介绍了NVIDIA Omniverse,这是一个包含API、SDK和服务的平台,使开发人员能够将Open USD和RTX渲染技术集成到他们的软件开发周期中。由皮克斯公司开发的开源格式Open USD是Omniverse中表示虚拟世界的基础层。
在这个基础之上构建的是IsaacSim,一个用于在物理精确和照片级真实环境中开发、训练和测试机器人的参考应用程序。物理精确性和照片级真实性都是机器人领域的重要组成部分,因为模拟环境必须尽可能接近真实世界,以确保成功的模拟到实际转移,在这种转移中,机器人可以在物理对应体上执行在模拟中学习的任务。
Rishab阐述了在IsaacSim中表示机器人的过程,强调了准确建模的重要性。如果机器人是使用SolidWorks或Catia等3D建模软件建模的,IsaacSim中的各种扩展和导入器可以无缝地将这些数据类型集成到模拟环境中。导入的资产会自动转换为USD格式,确保与Omniverse兼容。
此外,IsaacSim支持导入URDF(统一机器人描述格式)文件,这是机器人社区中一种流行的表示机器人(包括其几何形状、关节、传感器和其他组件)的格式。通过导入URDF文件,用户可以直接将现有的机器人模型带入IsaacSim环境。
一旦机器人被导入到IsaacSim中,下一个关键步骤是为其配备传感器,使机器人能够感知其环境并监控其内部状态。IsaacSim提供了一系列传感器选项,包括相机、激光雷达、雷达和超声波传感器,所有这些都可以无缝地添加到模拟机器人上。
机器人和传感器就位后,下一步是与模拟机器人进行接口并对其进行控制。Rishab强调了两种方法:Python脚本和机器人操作系统(ROS)桥接器。Python脚本允许用户对整个工作流进行脚本编写,将机器人带入IsaacSim、设置传感器、配置模拟场景并通过代码控制机器人。或者,对于熟悉ROS的用户,ROS 1或ROS 2桥接器扩展可以实现现有ROS软件堆栈的集成,提供了一种无缝的方式,使用已建立的基于ROS的系统控制模拟机器人。
Rishab还强调了IsaacSim生成合成数据的能力,这是训练基于感知的模型的宝贵资产。通过在照片级真实的模拟环境中设置相机,用户可以生成带有注释的数据,并可访问地面真实信息,然后可以无缝地将这些数据集成到训练管道中,以提高模型性能。
从模拟方面过渡,Rishab介绍了IsaacLab,这是一个建立在NVIDIA IsaacSim之上的开源模块化学习框架。IsaacLab旨在与机器人学习库轻松接口,使机器人能够在模拟的IsaacSim环境中更有效地学习任务。
Rishab确定了机器人学习的三个关键组成部分:数据生成器和渲染器(由IsaacSim提供)、任务设计环境(由IsaacLab提供)以及机器人学习框架本身(代理或“机器人大脑”)。虽然IsaacSim模拟机器人并提供对地面真实数据的访问,但IsaacLab是模拟机器人与学习代理之间的关键接口,使任务的配置和设置成为可能。
IsaacLab预装了各种环境、机器人体现形式、资产和传感器,允许用户在模拟环境中生成数千个机器人并训练它们执行拾取放置操作、运动(包括四足和人形)、导航和多智能体强化学习等任务。此外,IsaacLab提供了各种传感器类型的访问,包括常规相机、RGB-D相机、光线投射器和高度扫描仪,这些对于诸如四足运动等任务至关重要,在这些任务中,机器人需要了解自己与地面的距离,同时学习行走。
Rishab强调了准确的物理模拟在实现成功的模拟到实际转移中的重要性,这是一种可以直接将在模拟中训练的策略部署到实际机器人上而无需额外微调的范式。IsaacSim由NVIDIA的PhysX引擎支持,确保了准确的物理模拟,从而增加了成功的模拟到实际转移的可能性。
此外,IsaacLab与强化学习库和模仿学习框架集成,在中间件方面发挥着关键作用,并促进了可扩展性。这种可扩展性是一个关键优势,因为用户可以在单个GPU上训练和评估策略,或者跨多个GPU和节点分配工作负载,从而显著加快训练过程并缩短上市时间。
Rishab深入探讨了IsaacLab支持的两种强化学习工作流程:直接工作流程和基于管理器的工作流程。在直接工作流程中,单个类处理观测、动作、奖励和终止条件,对整个过程提供了细粒度控制。另一方面,基于管理器的工作流程提供了一种更加模块化的方法,允许用户调整和配置单个组件,如观测、奖励和其他参数,为复杂任务提供了更大的灵活性。
为了说明IsaacLab的强大功能,Rishab展示了一个用例,其中在IsaacLab环境中为Spot机器人训练了一个策略,在模拟环境中生成了数千个机器人来学习运动。值得注意的是,这个训练策略成功地以零次模拟到实际转移的方式转移到了一个真实的Spot机器人,这意味着不需要任何额外的微调。在模拟中训练的“机器人大脑”可以直接部署到物理机器人上,使其能够无缝地执行所学的运动任务。
Rishab还强调了几个生态系统采用案例,包括Fourier对训练人形机器人从躺着的位置站起来并抓取物体的工作、Galbort生成大量合成数据来训练抓取模型,以及Swiss Mile使用IsaacLab来训练和评估其独特的轮式四足设计的策略。
在这一阶段,Rishab将演示权移交给亚马逊云科技高级解决方案架构师Abishek Srivastav,后者继而讨论了在亚马逊云科技上集成NVIDIA Isaac Lab。
Abishek首先概述了在云端运行模拟工作负载的最佳实践,强调了容器化、选择合适的计算资源(CPU和GPU)、优化存储、并行处理和成本优化的重要性。
容器化在模拟项目中扮演着关键角色,因为设置模拟环境需要多种依赖项、库、操作系统和中间件。容器带来了跨平台和机器的可移植性和一致性,加快了开发时间,并确保了机器人训练过程中的一致结果。
Abishek强调选择合适的计算资源(包括CPU和GPU)的重要性,以确保在复杂的物理计算、渲染、策略训练和机器人模拟中涉及的奖励计算期间获得最佳性能,防止出现瓶颈。
机器人模拟通常需要大规模数据处理,无论是高保真模拟环境、合成数据处理,还是在机器人训练期间存储检查点。亚马逊云科技提供的优化存储解决方案有助于保持数据完整性并提高整体性能。
许多模拟项目可以从并行处理中获益,并行处理通过在多个节点和GPU核心之间分配工作负载来优化计算能力。选择具有足够GPU容量的合适计算资源可以显著加快性能并减少总训练时间。
最后,Abishek强调了成本优化的重要性,这是在亚马逊云科技上设计任何工作负载(包括模拟工作负载)的核心原则。在计算能力、性能和成本之间取得适当平衡,有助于组织在满足关键非功能性需求的同时控制预算。
Abishek随后解释了亚马逊云科技服务如何帮助遵循这些最佳实践,并在亚马逊云科技上运行NVIDIA Isaac Lab。亚马逊云科技为开发人员和研究人员提供了广泛的服务,可以构建端到端的模拟工作负载管道,让他们专注于微调模型和策略,而不必管理底层基础设施。
Amazon Batch是一项全面管理的批量计算服务,在大规模运行NVIDIA Isaac Lab时扮演着关键角色。它与Elastic Container Service (ECS)集成,为Isaac Lab提供容器化环境,使用户能够并行运行数百个模拟,而无需管理底层基础设施。Amazon Batch支持使用按需或现货EC2实例,以及通过Amazon Fargate进行无服务器计算,以提供计算能力。它可以动态扩展计算资源,优化机器人训练的总体成本。
Amazon Batch与Elastic File System (EFS)和Amazon S3原生集成,为训练数据集、合成数据、训练模型和训练策略提供持久和云规模的存储。此外,CloudWatch集成使用户能够在整个机器人学习过程中观察和监控训练性能和最终结果。
Abishek提供了使用Amazon Batch启动NVIDIA Isaac Lab的分步演示,从选择计算环境开始。在这一步骤中,用户选择由适合其特定工作负载的各种NVIDIA GPU系列提供支持的EC2实例类型。
第二步是创建作业定义,用户在其中提供各种作业参数,如容器详细信息、启动命令、vCPU和内存要求。
接下来,用户定义作业队列,该队列保存作业直到被处理。
最后,Abishek演示了使用之前创建的作业定义和作业队列启动Isaac Lab机器人学习作业。
亚马逊云科技提供了大量支持模拟工作负载的实例,Abishek承认,选择最佳实例类型并没有一刀切的解决方案。但是,他提供了指导原则,帮助客户为其用例选择合适的计算资源。
对于在复杂模拟环境中涉及多个机器人的训练作业,如果时间至关重要,Abishek建议使用由NVIDIA的L4 Tensor Core GPU提供支持的g6e实例,这种实例提供最佳的学习率。
如果成本是主要驱动因素,由NVIDIA的L4和Ampere Tensor Core GPU提供支持的g6和g5实例提供了最具成本效益的解决方案。
关键是确定主要目标是更快的学习率还是更高的成本效益,并运行基准测试以确定特定工作负载的最佳计算资源。Amazon Batch也可以简化评估过程,选择合适的计算资源。
Abishek随后展示了在亚马逊云科技上启动NVIDIA Isaac Lab的激动人心的演示。第一步是将NVIDIA Isaac Lab存储库和最新的Isaac Sim容器一起打包到自定义Docker镜像中。在本地克隆存储库并创建名为“isaac-lab-reinvent-demo”的容器后,Abishek继续前往Elastic Container Registry (ECR)存储库,为自定义Isaac Lab镜像创建占位符。
经过身份验证过程后,Abishek为自定义镜像添加标签并将其推送到ECR存储库,这个过程通常需要10到15分钟,具体取决于网络带宽和镜像大小。
镜像上传完成后,Abishek通过创建计算环境来设置Amazon Batch。他选择了演示的EC2实例类型,输入计算环境名称,并选择允许计算资源与Amazon S3、EFS或任何其他所需服务进行通信的角色。在此演示中,Abishek选择了由NVIDIA最新的L4Ts张量核心GPU提供支持的g6e实例来提供计算能力。
在配置了网络详细信息(选择VPC和私有子网用于计算环境)后,Abishek创建了作业定义。这一步骤包括选择计算环境(EC2)、启用多节点处理以跨两个不同节点分发作业、提供作业定义名称、执行时间、总节点数和EC2实例类型(g6e)。
Abishek然后添加了容器详细信息,包括来自ECR存储库的镜像位置、启动命令、vCPU、内存、GPU配置以及特定用例所需的任何运行时参数或环境变量。他还指定了训练的总时期数和每个作业的总GPU数。
创建作业定义后,Abishek继续创建作业队列,选择EC2计算能力,为作业队列提供名称,并选择之前创建的计算资源。
到这一步,Amazon Batch的设置已经准备好启动Isaac Lab强化学习作业了。Abishek提供了作业名称,选择了作业定义和作业队列,并根据需要覆盖任何参数来启动作业。
一旦作业处于启动状态,Abishek演示了如何通过笔记选项卡监控作业进度,该选项卡显示正在配置EC2实例以提供计算能力。作业完成后,他访问了CloudWatch日志,以监控各种训练属性,如每秒帧数的学习率、总训练时间、总时期数以及存储训练策略的位置。
Abishek随后启动了Isaac Lab环境,并使用训练好的策略展示了在模拟环境中自由模拟的Spot机器人,没有任何问题。
在一个令人兴奋的公告中,Abishek透露,在展览区的NVIDIA展台上有一个经过训练的Spot机器人,让与会者能够亲眼目睹演示的模拟到真实的方面,并观察物理机器人在将训练模型转移后如何模仿模拟行为。
总结本次会议,Abishek强调了使用亚马逊云科技运行Isaac Lab强化学习的主要好处:
- 在云规模的高保真、超现实模拟环境中加速机器人学习。
- 运行并发作业,不受资源容量的限制。
- 选择按需或现货实例,或通过动态计算资源调配实现无服务器,以优化训练成本。
- 利用更广泛的亚马逊云科技生态系统构建弹性和安全的基础设施。
Abishek强调了NVIDIA和亚马逊云科技自2010年以来的长期合作,不断为各个行业和领域的客户提供大规模、经济高效和灵活的GPU加速解决方案。这种合作关系推动了人工智能和模拟领域的发展,从为开发人员和研究人员提供可扩展AI平台的NVIDIA DGX Cloud,到将NVIDIA NYMPH与EC2、EKS和SageMaker等服务集成,以及在模拟和图形工作负载方面的NVIDIA Omniverse、Isaac Sim和Isaac Lab的工作。
最后,Abishek邀请与会者参加当天晚些时候的构建者会议MFG319,亲身体验在亚马逊云科技上运行NVIDIA Isaac Lab,并感谢大家参加这次富有洞见的会议。
下面是一些演讲现场的精彩瞬间:
演讲者承诺对物理人工智能进行令人兴奋的探索,探讨其潜力、挑战,以及NVIDIA和亚马逊云科技如何合作提供基于云的工具,帮助机器人技术人员和技术人员克服这些挑战。
IsaacLab作为关键接口,将IsaacSim中模拟的机器人与机器人学习框架相连接,实现任务定义并无缝集成观测、奖励和其他参数,以高效训练机器人。
演讲者解释了强化学习中观测的概念,以机器人手臂和立方体的拾取和放置任务为例,强调了理解立方体位置、机器人关节状态和任何相关传感器数据的重要性。
通过零次迁移,成功将模拟训练的机器人运动策略转移到真实机器人上,使机器人能够直接行走,无需任何微调。
Amazon Batch提供全面管理的批量计算能力,可大规模运行NVIDIA Isaac Lab模拟,与ECS、EC2、Fargate、EFS、S3和CloudWatch集成,实现高效且经济的机器人训练。
演示使用亚马逊云科技服务训练人工智能模型,并在模拟环境中可视化训练模型的性能。
亚马逊云科技和NVIDIA长期的合作使各行业客户能够利用前沿的GPU加速解决方案,推动人工智能和模拟的发展。
总结
在这个引人入胜的叙述中,我们踏上了探索物理AI前沿的旅程,在这里人工智能与有形世界融合。演讲者们揭示了这项革命性技术的巨大潜力,展示了它在各个行业的应用,从简化物流和制造到辅助医疗保健和农业。
这一创新的核心在于模拟,这是一种强大的工具,可以加速产品开发,实现彻底测试,并解锁以极快的速度在无数虚拟环境中训练机器人的能力。NVIDIA的Omniverse和Isaac Lab应运而生,成为了游戏规则的改变者,提供了一个全面的平台,用于实现逼真的模拟、物理精确的模型以及为Amazon Batch部署量身定制的容器。
通过NVIDIA尖端工具与亚马逊云科技可扩展云基础设施的融合,开发人员可以利用多GPU和多节点设置的强大功能,将训练过程从数周缩短到几个小时。演讲者们指导我们掌握最佳实践,从容器化和优化计算资源到并行处理和成本优化,使我们能够驾驭这个变革性的领域。
随着叙述的展开,我们见证了Isaac Lab在亚马逊云科技上的无缝集成,现场演示展示了强化学习作业的部署、动态计算资源扩展以及令人惊叹的将训练好的策略从模拟转移到实体机器人的过程。结尾的行动号召引人共鸣,邀请我们加入这场革命,在虚拟与现实的界限变得模糊的未来,机器人将学习、适应并在我们的世界中茁壮成长。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。