tv.utils.make_grid

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torchvision as tv

import numpy as np
batch_size = 64

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])#把[]中的操作整成一个pipline,均值和标准差

train_dataset = datasets.MNIST(root='./dataset/mnist/',
                                train=True,
                                download=True,
                                transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)

# dataiter = iter(train_loader)
# images, label = dataiter.next()
#
# classes = ('0','1','2','3','4','5','6','7','8','9')
# print(' '.join('%11s' %classes[label[j]] for j in range(4)))
# show = ToPILImage()
# show(tv.utils.make_grid((images + 1) / 2)).resize(400,100)
import matplotlib.pyplot as plt
def show(img):
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest')


for imgs,targets in train_loader:
    break

print(len(imgs))
print(imgs.size())
show(tv.utils.make_grid(imgs, nrow=8, padding=0, pad_value=0))
plt.axis('off')
plt.show()




在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值