import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision.transforms import ToPILImage
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
import torchvision as tv
import numpy as np
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])#把[]中的操作整成一个pipline,均值和标准差
train_dataset = datasets.MNIST(root='./dataset/mnist/',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
# dataiter = iter(train_loader)
# images, label = dataiter.next()
#
# classes = ('0','1','2','3','4','5','6','7','8','9')
# print(' '.join('%11s' %classes[label[j]] for j in range(4)))
# show = ToPILImage()
# show(tv.utils.make_grid((images + 1) / 2)).resize(400,100)
import matplotlib.pyplot as plt
def show(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest')
for imgs,targets in train_loader:
break
print(len(imgs))
print(imgs.size())
show(tv.utils.make_grid(imgs, nrow=8, padding=0, pad_value=0))
plt.axis('off')
plt.show()
tv.utils.make_grid
最新推荐文章于 2024-08-06 03:30:00 发布