第二章 统计指数理论

很抱歉,这个统计指数理论就只能写到这,写这个太浪费时间,而且自己也就是写了下来而已,并没有记住与深一步的理解,我觉得还是要自己弄懂才是最重要的,而不是写一堆看起来很牛逼的东西,毕竟学习这种事,学的怎么样只有自己才知道。

2.1 第一节 统计指数的数理经济理论

2.1.1 个体指数与总指数性质及其关系描述

(一) 个体指数是随机变量

随机变量要满足的条件:

  1. 变量所有可能的值都是已知的;
  2. 在每次实验之前变量将出现什么值是未知的;
  3. 每次实验后变量的值是一个确定的数;
  4. 如果反复进行同样实验,变量出现的值有一定的规律性;

(二) 社会商品个体指数

令X为社会商品个体价格指数,Y为社会商品个体物量指数,Z为社会商品个体价值指数

Z=XY,且X,Y,Z,可看做连续型随机变量
根据总指数的性质,社会商品价格指数,社会商品物量指数和社会商品价值指数分别是社会商品个体价格指数,社会商品个体物量指数和社会商品个体价值指数平均
从全社会来看,社会商品价值总指数是社会商品价格总指数和社会商品物量总指数的函数,也是社会商品个体价格指数X和社会商品个体物量指数Y的函数

(三) 社会商品总指数

设随机变量X和Y的边际概率密度函数分别为 ∫ − X ( X ) \int-{X}(X) X(X), ∫ − Y ( y ) \int-{Y}(y) Y(y),联合密度函数为 ∫ ( x , y ) \int(x,y) (x,y),则有:
社会商品价格总指数: E ( X ) = ∫ 0 + ∞ X ∫ x ( x ) d x E(X)=\int_{0}^{+\infty}X\int_x (x)dx E(X)=0+Xx(x)dx
社会商品物量总指数: E ( Y ) = ∫ 0 + ∞ y ∫ Y ( y ) d y E(Y)=\int_{0}^{+\infty}y\int_Y (y)dy E(Y)=0+yY(y)dy
社会商品价值总指数: E ( Z ) = E ( X Y ) = ∫ 0 + ∞ ∫ 0 + ∞ x y ∫ ( x , y ) d x d y E(Z)=E(XY)=\int_{0}^{+\infty}\int_{0}^{+\infty}xy\int(x,y)dxdy E(Z)=E(XY)=0+0+xy(x,y)dxdy
:我们认为X,Y是相互独立,即E(X)不考虑物量的变动,单纯研究商品价格变化的状况。商品个体价格指数对社会价值总额的影响作用始终是 。E(Y)不考虑物价变化带动物量随机变化的部分,单纯研究商品物量变动时得到的社会商品物量变化。

(四) 代表品指数

由于社会商品众多,受到人力,物力,财力,时间等多种因素的限制,不可能将所需资料一个不漏地全部收集到。世界各国都用代表品集团的数据资料对社会商品总体性质进行统计推断,即将代表品集团的数量特征视为社会商品总体的数量特征

我国选取代表品集团的具体做法是:把社会商品首先划分为几个大类,大类下划分中类,中类下划分小类,然后在每个小类中选取代表品。
代表品样本指数是离散型随机变量
令p1/0为代表品个体物价指数,q1/0为代表品个体物量指数,v1/0为代表品个体价值指数。即:
代表品个体物价指数: p 1 / 0 = p 1 p 0 p_{1/0}=\frac{p_1}{p_0} p1/0=p0p1
代表品个体物量指数: q 1 / 0 = q 1 q 0 q_{1/0}=\frac{q_1}{q_0} q1/0=q0q1
代表品个体价值指数: v 1 / 0 = v 1 v 0 = p 1 / 0 q 1 / 0 v_{1/0}=\frac{v_1}{v_0}=p_{1/0}q_{1/0} v1/0=v0v1=p1/0q1/0
代表品价值指数: V 1 / 0 = ∑ v 1 ∑ v 0 = ∑ p 1 q 1 ∑ p 0 q 0 = ∑ p 1 / 0 q 1 / 0 p 0 q 0 ∑ p 0 q 0 V_{1/0}=\frac{\sum v_1}{\sum v_0}=\frac{\sum p_1 q_1}{\sum p_0 q_0}=\sum p_{1/0}q_{1/0}\frac{p_0 q_0}{\sum p_0 q_0} V1/0=v0v1=p0q0p1q1=p1/0q1/0p0q0p0q0
社会商品总价值: V = lim ⁡ n → ∞ ∑ j = 1 N p j q j V=\lim\limits_{n\to\infty}\sum_{j=1}^N p_j q_j V=nlimj=1Npjqj
其中pj,qj分别表示社会商品j的价格和物量。
社会商品价值指数: E ( Z ) = lim ⁡ n → ∞ ∑ j = 1 N p 1 j q 1 j ∑ j = 1 N p 0 j q 0 j E(Z)=\lim\limits_{n\to\infty}\frac{\sum_{j=1}^N p_{1j}q_{1j}}{\sum_{j=1}^N p_{0j}q_{0j}} E(Z)=nlimj=1Np0jq0jj=1Np1jq1j
p0j,p1j分别表示社会商品j的基期和报告期的价格;q0j,q1j分别表示社会商品j的基期和报告期的物量。

(五)代表品价值总指数是社会商品价值总指数的一致无偏估计量

  • 一致估计:
    ∀ ξ > 0 , 有 lim ⁡ n → ∞ P ( ∣ V 1 / 0 − E ( Z ) ∣ < ξ ) = 1 \forall\xi>0,有\lim\limits_{n\to\infty}P(|V_{1/0}-E(Z)|<\xi)=1 ξ>0,nlimP(V1/0E(Z)<ξ)=1
    lim ⁡ n → ∞ V 1 / 0 = lim ⁡ n → ∞ ∑ i = 1 N p 1 i q 1 i ∑ i = 1 N p 0 i q 0 i = E ( Z ) = lim ⁡ n → ∞ ∑ j = 1 N p 1 j q 1 j ∑ j = 1 N p 0 j q 0 j \lim\limits_{n\to\infty}V_{1/0}=\lim\limits_{n\to\infty}\frac{\sum_{i=1}^N p_{1i}q_{1i}}{\sum_{i=1}^N p_{0i}q_{0i}}=E(Z)=\lim\limits_{n\to\infty}\frac{\sum_{j=1}^N p_{1j}q_{1j}}{\sum_{j=1}^N p_{0j}q_{0j}} nlimV1/0=nlimi=1Np0iq0ii=1Np1iq1i=E(Z)=nlimj=1Np0jq0jj=1Np1jq1j
    其中p0i,p1i分别表示社会商品i的基期和报告期的价格;q0i,q1i分别表示社会商品i的基期和报告期的物量;p0j,p1j分别表示社会商品j的基期和报告期的价格;q0j,q1j分别表示社会商品j的基期和报告期的物量。

  • 无偏估计:
    由于我们从社会商品中抽取代表品集团的过程可近似看为分层抽样,由分层抽样的性质可知,若每一层中的估计量乘每一层中占总体的比重,则为无偏估计

    • 将V1/0中的 p 0 q 0 ∑ p 0 q 0 \frac{p_0 q_0}{\sum p_0 q_0} p0q0p0q0改换成各小类基期价值量占整个基期价值总量的比重 W ′ , 则 V 1 / 0 = ∑ v 1 / 0 W ′ = ∑ p 1 / 0 q 1 / 0 W ′ W^{\prime},则V_{1/0}=\sum v_{1/0}W^{\prime}=\sum p_{1/0} q_{1/0}W^{\prime} WV1/0=v1/0W=p1/0q1/0W是社会商品价值总指数的无偏估计量。
    • 根据代表品的选择,可认为在每个小类中有: W ′ ≈ p 0 q 0 ∑ p 0 q 0 W^{\prime}\thickapprox\frac{p_0 q_0}{\sum p_0 q_0} Wp0q0p0q0(绕了一圈又回去了),所以 V 1 / 0 = ∑ v 1 / 0 p 0 q 0 ∑ p 0 q 0 V_{1/0}=\sum v_{1/0}\frac{p_0 q_0}{\sum p_0 q_0} V1/0=v1/0p0q0p0q0近似于社会商品价值总指数E(x)的无偏估计量。
  • 知识点回顾之评价估计量的标准:

  • 无偏性:估计量抽样分布的数学期望等于被估的总体参数,即
    E ( θ ^ ) = θ E(\widehat{\theta})=\theta E(θ )=θ
    渐进无偏性: E ( θ ^ ) ≠ θ E(\widehat{\theta})\neq\theta E(θ )=θ,但有 lim ⁡ n → ∞ E ( θ ^ ) = θ \lim\limits_{n\to\infty}E(\widehat{\theta})=\theta nlimE(θ )=θ

  • 有效性:对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效,即
    E ( θ 1 ^ ) = E ( θ 2 ^ ) = θ , V a r ( θ 1 ^ ) < V a r ( θ 2 ^ ) ⟹ θ 1 ^ 比 θ 2 ^ 更 有 效 E(\widehat{\theta_1})=E(\widehat{\theta_2})=\theta,Var(\widehat{\theta_1})<Var(\widehat{\theta_2})\Longrightarrow\widehat{\theta_1}比\widehat{\theta_2}更有效 E(θ1 )=E(θ2 )=θ,Var(θ1 )<Var(θ2 )θ1 θ2

  • 均方误差性对于两个不(不全)是无偏估计量的估计量,我们选择围绕其真值波动小的估计量,即
    E ( θ 1 ^ − θ ) 2 ⩽ E ( θ 2 ^ − θ ) 2 ⟹ θ 1 ^ 比 θ 2 ^ 的 波 动 更 小 E(\widehat{\theta_1}-\theta)^2\leqslant E(\widehat{\theta_2}-\theta)^2\Longrightarrow\widehat{\theta_1}比\widehat{\theta_2}的波动更小 E(θ1 θ)2E(θ2 θ)2θ1 θ2
    其中 E ( θ i ^ − θ ) E(\widehat{\theta_i}-\theta) E(θi θ)称为 θ i \theta_i θi均方误差,常记为 M S E ( θ i ^ ) MSE(\widehat{\theta_i}) MSE(θi )
    θ ^ \widehat{\theta} θ θ \theta θ的无偏估计,则其均方误差即为方差,即 M S E ( θ ^ ) = V a r ( θ ^ ) MSE(\widehat{\theta})=Var(\widehat{\theta}) MSE(θ )=Var(θ )
    均方误差的分解:
    M S E ( θ ^ ) = E ( θ ^ − θ ) 2 = E [ ( θ ^ − E θ ^ ) + ( E θ ^ − θ ) ] 2 = E ( θ ^ − E θ ^ ) 2 + ( E θ ^ − θ ) 2 = V a r ( θ ^ ) + σ 2 MSE(\widehat{\theta})=E(\widehat{\theta}-\theta)^2=E[(\widehat{\theta}-E\widehat{\theta})+(E\widehat{\theta}-\theta)]^2=E(\widehat{\theta}-E\widehat{\theta})^2 +(E\widehat{\theta}-\theta)^2=Var(\widehat{\theta})+\sigma^2 MSE(θ )=E(θ θ)2=E[(θ Eθ )+(Eθ θ)]2=E(θ Eθ )2+(Eθ θ)2=Var(θ )+σ2

  • 一致性(相合性):随着样本量的增大,估计量的值越来越接近被估计的总体参数,即
    ∀ ξ > 0 , 有 lim ⁡ n → ∞ P ( ∣ θ ^ − θ ∣ < ξ ) = 1 \forall\xi>0,有\lim\limits_{n\to\infty}P(|\widehat{\theta}-\theta|<\xi)=1 ξ>0,nlimP(θ θ<ξ)=1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值