第四章 ARMA模型的特性

4.1 格林函数与平稳性

4.1.1 线性常系数差分方程

这一部分内容只需对差分方程有基础的认识就可以,能判断是几阶差分方程,是齐次还是非齐次,会求非齐次差分方程的通解就行,这一部分的内容是本小节的基础,所以也要重视。

(一) 线性常系数差分方程的简单了解

y ( k + n ) + a n − 1 y ( k + n − 1 ) + . . . + a 0 y ( k ) = u ( k ) y(k+n)+a_{n-1}y(k+n-1)+...+a_0 y(k)=u(k) y(k+n)+an1y(k+n1)+...+a0y(k)=u(k)
这就是一个普通的n阶差分方程
判断差分方程的具体分类:

  1. n阶是指函数y(x)中参数的最大差为n,所以是n阶差分方程。
  2. 其中a0,…,an-1为系统参数的函数,当a0,…,an-1为常数时,就是常系数差分方程。
  3. 当u(k) ≠ \neq =时,这个差分方程就是非齐次差分方程,当u(k)=0时,这个差分方程就是齐次差分方程。

(二) 线性常系数差分方程解的特点

求解一个n阶齐次差分方程就是在知道y(0),y(1)…,y(n-1)的前提,求出y(n),y(n+1),…当然,最好是求出一般解,即通解。而我们时间序列模型正好就是在知道Xt-1,Xt-2,…,Xt-n的条件下求出Xt所以ARMA模型完全等价与一个差分方程
非齐次方程通解的特点:
非 齐 次 方 程 的 通 解 = 齐 次 方 程 的 通 解 + 非 齐 次 方 程 的 特 解 非齐次方程的通解=齐次方程的通解+非齐次方程的特解 =+

齐次差分方程的通解(以2阶常系数齐次差分方程为例)

二阶线性常系数非齐次差分方程的一般形式为
a y n + 2 + b y n + 1 + c y n = f ( n ) , n = 1 , 2 , . . . ay_{n+2}+by_{n+1}+cy_n=f(n),n=1,2,... ayn+2+byn+1+cyn=f(n),n=1,2,...
其中a,c,b为已知常数,且 c ≠ 0 , a ≠ 0 c\neq0,a\neq0 c=0,a=0,f(n为已知函数),则对应的齐次方程为:
a y n + 2 + b y n + 1 + c y n = 0 ay_{n+2}+by_{n+1}+cy_n=0 ayn+2+byn+1+cyn=0
y n = λ n y_n =\lambda^n yn=λn为齐次方程的特解(其中 λ \lambda λ为非零待定参数,这样设特解只是因为我们需要求特征根和方便计算),带入齐次方程,有
a λ 2 + b λ + c = 0 a\lambda^2+b\lambda+c=0 aλ2+bλ+c=0
上式称为齐次(非齐次)差分方程的特征方程,该方程的解称为特征根(特征值)
特征方程的解有以下三种情况:

  1. 特征方程有两个不等的实根,即 Δ = b 2 − 4 a c > 0 \Delta=b^2 -4ac>0 Δ=b24ac>0
    根据求根公式可知,这两个不等的实根为
    λ 1 , λ 2 = − b ± Δ 2 a \lambda_1,\lambda_2=\frac{-b\pm\sqrt{\Delta}}{2a} λ1,λ2=2ab±Δ
    从而得到齐次方程的通解:
    y ( n ) = C 1 λ 1 n + C 2 λ 2 n y(n)=C_1 \lambda_1^{n}+C_2\lambda_2^{n} y(n)=C1λ1n+C2λ2n
    其中C1,C2为任意常数。
    n阶齐次方程的通解: y n = C 1 λ 1 n + C 2 λ 2 n + . . . + C n λ n n y_n=C_1 \lambda_1^{n}+C_2\lambda_2^{n}+...+C_n\lambda_n^n yn=C1λ1n+C2λ2n+...+Cnλnn
  2. 特征方程有两个相等的实根,即 Δ = b 2 − 4 a c = 0 \Delta=b^2 -4ac=0 Δ=b24ac=0
    根据求根公式可知,这两个相等的实根为
    λ 1 = λ 2 = − b 2 a \lambda_1=\lambda_2=-\frac{b}{2a} λ1=λ2=2ab
    从而得到齐次方程的通解:
    y ( n ) = ( C 1 + C 2 n ) λ n y(n)=(C_1 +C_2n)\lambda^n y(n)=(C1+C2n)λn
    其中C1,C2为任意常数。
    n阶齐次方程的通解(前d个特征根相同,后d个特征根不同): y n = ( C 1 + C 2 t + . . . + C d t d − 1 ) λ 1 n + C d + 1 λ d + 1 n + C d + 2 λ d + 2 n + . . . + C n λ n n y_n=(C_1+C_2 t+...+C_d t^{d-1})\lambda_1^n+C_{d+1}\lambda_{d+1}^n+C_{d+2}\lambda_{d+2}^n +...+C_{n}\lambda_{n}^n yn=(C1+C2t+...+Cdtd1)λ1n+Cd+1λd+1n+Cd+2λd+2n+...+Cnλnn
  3. 特征方程有两个共轭复根,即 Δ = b 2 − 4 a c < 0 \Delta=b^2 -4ac<0 Δ=b24ac<0
    根据求根公式可知,这两个不等的实根为
    λ 1 , λ 2 = − b ± i − Δ 2 a \lambda_1,\lambda_2=\frac{-b\pm i\sqrt{-\Delta}}{2a} λ1,λ2=2ab±iΔ
    从而得到齐次方程的通解:
    y ( n ) = r n ( C 1 c o s β n + C 2 s i n β n ) y(n)=r^n(C_1 cos\beta n+C_2 sin\beta n) y(n)=rn(C1cosβn+C2sinβn)
    其中C1,C2为任意常数。
    r = ( − b 2 a ) 2 + ( − Δ 2 a ) 2 = c , t a n β = − 1 b 4 a c − b 2 , β ∈ ( 0 , π ) r=\sqrt{(-\frac{b}{2a})^2+(\frac{\sqrt{-\Delta}}{2a})^2}=\sqrt{c},tan\beta =-\frac{1}{b}\sqrt{4ac-b_2},\beta\in(0,\pi) r=(2ab)2+(2aΔ )2 =c ,tanβ=b14acb2 ,β(0,π)
    其中r为复特征根的模, β \beta β为复特征的辐角 a = 0 时 , β = π 2 a=0时,\beta=\frac{\pi}{2} a=0β=2π
  • 差分方程有实根时,一般先用配方法求解特征根,无法配方时,再用求根公式
  • **当求出方程的两个特征值之后,还要判断y(n)1与y(n)2之间是否存在线性关系(因为当初设的是y(n)= λ n \lambda^n λn为齐次方程的特解),若 y ( n ) 1 y ( n ) 2 ≠ 常 数 \frac{y(n)_1}{y(n)_2}\neq常数 y(n)2y(n)1=则说明y(n)1与y(n)2线性无关

4.1.2 AR(1)系统的格林函数

(一) 传递形式及格林函数的介绍

格林函数:描述系统记忆扰动的程度的函数
传递形式:就是把Xt表示成既往扰动at-j( j ⩾ 0 j\geqslant0 j0)的加权和形式:
X t = ∑ j = 0 ∞ G j a t − j X_t=\sum_{j=0}^{\infty}G_ja_{t-j} Xt=j=0Gjatj
其中Gj就是格林函数,也称传递函数或记忆函数。也就是等价传递形式中既往扰动at-j的权重,j=0,1,2,…

(二) MA(q)模型的格林函数

MA(q)模型如下:
X t = a t − θ 1 a t − 1 − θ 2 a t − 2 − . . . − θ q a t − q X_t=a_t -\theta_1 a_{t-1}-\theta_2 a_{t-2}-...-\theta_q a_{t-q} Xt=atθ1at1θ2at2...θqatq
在MA(q)模型中,Xt已经被表示成既往扰动at-j的加权和形式,所以可以知道MA(q)模型的格林函数,如下所示:
G 0 = 1 G_0=1 G0=1
G 1 = − θ 1 G_1=-\theta_1 G1=θ1
G 2 = − θ 2 G_2=-\theta_2 G2=θ2
. . . ... ...
G q = − θ q G_q=-\theta_q Gq=θq
G j = 0 ( j > q ) G_j=0(j>q) Gj=0(j>q)

(三) AR(1)模型的格林函数

对于AR(1)系统我们利用逐期代替的思想求解格林函数
我们知道AR(1)模型为
X t = φ 1 X t − 1 + a t X_t=\varphi_1X_{t-1}+a_t Xt=φ1Xt1+at
由AR(1)模型的假设我们可以知道,AR(1)模型具有一阶记忆性,即当期的值只与其前一期的值有关。
当t=t-1时,有 X t − 1 = φ 1 X t − 2 + a t − 1 X_{t-1}=\varphi_1X_{t-2}+a_{t-1} Xt1=φ1Xt2+at1
带入AR(1)模型,则有
X t = φ 1 ( φ 1 X t − 2 + a t − 1 ) + a t ⟹ X t = φ 1 2 X t − 2 + φ 1 a t − 1 + a t ( 1 ) X_t=\varphi_1(\varphi_1X_{t-2}+a_{t-1})+a_t\Longrightarrow X_t=\varphi_1^2X_{t-2}+\varphi_1 a_{t-1}+a_t(1) Xt=φ1(φ1Xt2+at1)+atXt=φ12Xt2+φ1at1+at(1)
当t=t-2时,有 X t − 2 = φ 1 X t − 3 + a t − 2 X_{t-2}=\varphi_1X_{t-3}+a_{t-2} Xt2=φ1Xt3+at2
带入1式,则有
X t = φ 1 2 ( φ 1 X t − 3 + a t − 2 ) + φ 1 a t − 1 + a t ⟹ X t = φ 1 3 X t − 3 + φ 1 2 a t − 2 + φ 1 a t − 1 + a t ( 2 ) X_t=\varphi_1^2(\varphi_1X_{t-3}+a_{t-2})+\varphi_1 a_{t-1}+a_t\Longrightarrow X_t=\varphi_1^3X_{t-3}+\varphi_1^2a_{t-2}+\varphi_1 a_{t-1}+a_t(2) Xt=φ12(φ1Xt3+at2)+φ1at1+atXt=φ13Xt3+φ12at2+φ1at1+at(2)
当t=t-3时,有 X t − 3 = φ 1 X t − 4 + a t − 3 X_{t-3}=\varphi_1X_{t-4}+a_{t-3} Xt3=φ1Xt4+at3
依次递推,则可以得到
X t = . . . + φ 1 p a t − p + . . . + φ 1 2 a t − 2 + φ 1 a t − 1 + a t X_t=...+\varphi_1^p a_{t-p}+...+\varphi_1^2a_{t-2}+\varphi_1 a_{t-1}+a_t Xt=...+φ1patp+...+φ12at2+φ1at1+at
将上式转变为等价传递形式,则有
X

  • 5
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值