import numpy as np
import pandas as pd
一、长表宽表的变形函数
长表 vs 宽表:一个表中把性别存储在某一个列中,那么它就是关于性别的长表;如果把性别作为列名,列中的元素是某一其他的相关特征数值,那么这个表是关于性别的宽表。下面的两张表就分别是关于性别的长表和宽表:
pd. DataFrame( { 'Gender' : [ 'F' , 'F' , 'M' , 'M' ] , 'Height' : [ 163 , 160 , 175 , 180 ] } )
Gender Height 0 F 163 1 F 160 2 M 175 3 M 180
pd. DataFrame( { 'Height: F' : [ 163 , 160 ] , 'Height: M' : [ 175 , 180 ] } )
Height: F Height: M 0 163 175 1 160 180
这两张表信息上完全等价,呈现方式与性别一列选择的布局模式有关,即以
l
o
n
g
\color{red}{long}
l o n g 的状态存储还是以
w
i
d
e
\color{red}{wide}
w i d e 的状态存储。因此,pandas
针对此类长宽表的变形操作设计了一些有关的变形函数。
1. pivot_长表变宽表(唯一性条件)
pivot
是一种典型的长表变宽表的函数,首先来看一个例子:下表存储了张三和李四的语文和数学分数,现在想要把语文和数学分数作为列来展示。
df = pd. DataFrame( { 'Class' : [ 1 , 1 , 2 , 2 ] ,
'Name' : [ 'San Zhang' , 'San Zhang' , 'Si Li' , 'Si Li' ] ,
'Subject' : [ 'Chinese' , 'Math' , 'Chinese' , 'Math' ] ,
'Grade' : [ 80 , 75 , 90 , 85 ] } )
df
Class Name Subject Grade 0 1 San Zhang Chinese 80 1 1 San Zhang Math 75 2 2 Si Li Chinese 90 3 2 Si Li Math 85
对于一个基本的长变宽操作而言,最重要的有三个要素,分别是变形后的行索引、需要转到列索引的列,以及这些列和行索引对应的数值 ,它们分别对应了pivot
方法中的index, columns, values
参数。新生成表的列索引是columns
对应列的unique
值,而新表的行索引是index
对应列的unique
值,而values
对应了想要展示的数值列。
df. pivot( index= 'Name' , columns= 'Subject' , values= 'Grade' )
Subject Chinese Math Name San Zhang 80 75 Si Li 90 85
利用pivot
进行变形操作需要满足唯一性 的要求,即由于在新表中的行列索引对应了唯一的value
,因此原表中的index
和columns
对应两个列的行组合 必须唯一
pandas
从1.1.0
开始,pivot
相关的三个参数允许被设置为列表 ,意味着会返回多级索引 。例如:下表中六列分别为班级、姓名、测试类型(期中考试和期末考试)、科目、成绩、排名。
df = pd. DataFrame( { 'Class' : [ 1 , 1 , 2 , 2 , 1 , 1 , 2 , 2 ] ,
'Name' : [ 'San Zhang' , 'San Zhang' , 'Si Li' , 'Si Li' ,
'San Zhang' , 'San Zhang' , 'Si Li' , 'Si Li' ] ,
'Examination' : [ 'Mid' , 'Final' , 'Mid' , 'Final' ,
'Mid' , 'Final' , 'Mid' , 'Final' ] ,
'Subject' : [ 'Chinese' , 'Chinese' , 'Chinese' , 'Chinese' ,
'Math' , 'Math' , 'Math' , 'Math' ] ,
'Grade' : [ 80 , 75 , 85 , 65 , 90 , 85 , 92 , 88 ] ,
'rank' : [ 10 , 15 , 21 , 15 , 20 , 7 , 6 , 2 ] } )
df
Class Name Examination Subject Grade rank 0 1 San Zhang Mid Chinese 80 10 1 1 San Zhang Final Chinese 75 15 2 2 Si Li Mid Chinese 85 21 3 2 Si Li Final Chinese 65 15 4 1 San Zhang Mid Math 90 20 5 1 San Zhang Final Math 85 7 6 2 Si Li Mid Math 92 6 7 2 Si Li Final Math 88 2
现在想要把测试类型和科目联合组成的四个类别(期中语文、期末语文、期中数学、期末数学)转到列索引,并且同时统计成绩和排名:
pivot_multi = df. pivot( index = [ 'Class' , 'Name' ] ,
columns = [ 'Subject' , 'Examination' ] ,
values = [ 'Grade' , 'rank' ] )
pivot_multi
Grade rank Subject Chinese Math Chinese Math Examination Mid Final Mid Final Mid Final Mid Final Class Name 1 San Zhang 80 75 90 85 10 15 20 7 2 Si Li 85 65 92 88 21 15 6 2
根据唯一性原则,新表的行索引等价于对index
中的多列使用drop_duplicates
,而列索引的长度为values
中的元素个数乘以columns
的唯一组合数量(与index
类似)。
2. pivot_table_(长变宽(不唯一时,聚合操作))
pivot
的使用依赖于唯一性条件,那如果不满足唯一性条件,那么必须通过聚合操作使得相同行列组合对应的多个值变为一个值 。例如,张三和李四都参加了两次语文考试和数学考试,按照学院规定,最后的成绩是两次考试分数的平均值,此时就无法通过pivot
函数来完成。
df = pd. DataFrame( { 'Name' : [ 'San Zhang' , 'San Zhang' ,
'San Zhang' , 'San Zhang' ,
'Si Li' , 'Si Li' , 'Si Li' , 'Si Li' ] ,
'Subject' : [ 'Chinese' , 'Chinese' , 'Math' , 'Math' ,
'Chinese' , 'Chinese' , 'Math' , 'Math' ] ,
'Grade' : [ 80 , 90 , 100 , 90 , 70 , 80 , 85 , 95 ] } )
df
Name Subject Grade 0 San Zhang Chinese 80 1 San Zhang Chinese 90 2 San Zhang Math 100 3 San Zhang Math 90 4 Si Li Chinese 70 5 Si Li Chinese 80 6 Si Li Math 85 7 Si Li Math 95
pandas
中提供了pivot_table
来实现,其中的aggfunc
参数就是使用的聚合函数。上述场景可以如下写出:
df. pivot_table( index = 'Name' ,
columns = 'Subject' ,
values = 'Grade' ,
aggfunc = 'mean' )
Subject Chinese Math Name San Zhang 85 95 Si Li 75 90
aggfunc
包含了 pandas_3 分组 博文中介绍的所有合法聚合字符串,此外还可以传入以序列为输入,标量为输出的聚合函数来实现自定义操作,上述功能可以等价写出:
df. pivot_table( index = 'Name' ,
columns = 'Subject' ,
values = 'Grade' ,
aggfunc = lambda x: x. mean( ) )
Subject Chinese Math Name San Zhang 85 95 Si Li 75 90
此外,pivot_table
具有边际汇总 的功能,可以通过设置margins=True
来实现,其中边际的聚合方式与aggfunc
中给出的聚合方法一致 。下面就分别统计了语文均分和数学均分、张三均分和李四均分,以及总体所有分数的均分:
df. pivot_table( index = 'Name' ,
columns = 'Subject' ,
values = 'Grade' ,
aggfunc= 'mean' ,
margins= True )
Subject Chinese Math All Name San Zhang 85 95.0 90.00 Si Li 75 90.0 82.50 All 80 92.5 86.25
3. melt_宽表变长表(列类别单一)
melt
函数宽表转为长表。在下面的例子中,Subject
以列索引的形式存储,现在想要将其压缩到一个列中。
df = pd. DataFrame( { 'Class' : [ 1 , 2 ] ,
'Name' : [ 'San Zhang' , 'Si Li' ] ,
'Chinese' : [ 80 , 90 ] ,
'Math' : [ 80 , 75 ] } )
df
Class Name Chinese Math 0 1 San Zhang 80 80 1 2 Si Li 90 75
df_melted = df. melt( id_vars = [ 'Class' , 'Name' ] ,
value_vars = [ 'Chinese' , 'Math' ] ,
var_name = 'Subject' ,
value_name = 'Grade' )
df_melted
Class Name Subject Grade 0 1 San Zhang Chinese 80 1 2 Si Li Chinese 90 2 1 San Zhang Math 80 3 2 Si Li Math 75
melt
和pivot
是一组互逆过程,那么就一定可以通过pivot
操作把df_melted
转回df
的形式:
df_unmelted = df_melted. pivot( index = [ 'Class' , 'Name' ] ,
columns= 'Subject' ,
values= 'Grade' )
df_unmelted
Subject Chinese Math Class Name 1 San Zhang 80 80 2 Si Li 90 75
df_unmelted = df_unmelted. reset_index( ) . rename_axis( columns= { 'Subject' : '' } )
df_unmelted. equals( df)
4. wide_to_long(宽变长(列为交叉类别))
melt
方法中,在列索引中被压缩的一组值对应的列元素只能代表同一层次的含义,即values_name
。现在如果列中包含了交叉类别,比如期中期末的类别和语文数学的类别,那么想要把values_name
对应的Grade
扩充为两列分别对应语文分数和数学分数,只把期中期末的信息压缩,这种需求下就要使用wide_to_long
函数来完成。
df = pd. DataFrame( { 'Class' : [ 1 , 2 ] , 'Name' : [ 'San Zhang' , 'Si Li' ] ,
'Chinese_Mid' : [ 80 , 75 ] , 'Math_Mid' : [ 90 , 85 ] ,
'Chinese_Final' : [ 80 , 75 ] , 'Math_Final' : [ 90 , 85 ] } )
df
Class Name Chinese_Mid Math_Mid Chinese_Final Math_Final 0 1 San Zhang 80 90 80 90 1 2 Si Li 75 85 75 85
pd. wide_to_long( df,
stubnames= [ 'Chinese' , 'Math' ] ,
i = [ 'Class' , 'Name' ] ,
j= 'Examination' ,
sep= '_' ,
suffix= '.+' )
Chinese Math Class Name Examination 1 San Zhang Mid 80 90 Final 80 90 2 Si Li Mid 75 85 Final 75 85
具体的变换过程由下图进行展示,属相同概念的元素使用了一致的颜色标出:
下面给出一个比较复杂的案例,把之前在pivot
一节中多列操作的结果(产生了多级索引),利用wide_to_long
函数,将其转为原来的形态。其中,使用了str.split
函数,目前暂时只需将其理解为对序列按照某个分隔符进行拆分即可。
res = pivot_multi. copy( )
res. columns = res. columns. map ( lambda x: '_' . join( x) )
res = res. reset_index( )
res = pd. wide_to_long( res, stubnames= [ 'Grade' , 'rank' ] ,
i = [ 'Class' , 'Name' ] ,
j = 'Subject_Examination' ,
sep = '_' ,
suffix = '.+' )
res
Grade rank Class Name Subject_Examination 1 San Zhang Chinese_Mid 80 10 Chinese_Final 75 15 Math_Mid 90 20 Math_Final 85 7 2 Si Li Chinese_Mid 85 21 Chinese_Final 65 15 Math_Mid 92 6 Math_Final 88 2
res = res. reset_index( )
res[ [ 'Subject' , 'Examination' ] ] = res[ 'Subject_Examination' ] . str . split( '_' , expand= True )
res = res[ [ 'Class' , 'Name' , 'Examination' , 'Subject' , 'Grade' , 'rank' ] ] . sort_values( 'Subject' )
res = res. reset_index( drop= True )
res
Class Name Examination Subject Grade rank 0 1 San Zhang Mid Chinese 80 10 1 1 San Zhang Final Chinese 75 15 2 2 Si Li Mid Chinese 85 21 3 2 Si Li Final Chinese 65 15 4 1 San Zhang Mid Math 90 20 5 1 San Zhang Final Math 85 7 6 2 Si Li Mid Math 92 6 7 2 Si Li Final Math 88 2
二、索引的变形
1. stack与unstack(行列索引之间变换)
在 pandas_2索引 博文中提到了利用swaplevel
或者reorder_levels
进行索引内部的层交换,下面就要讨论
行
列
索
引
之
间
\color{red}{行列索引之间}
行 列 索 引 之 间 的交换,由于这种交换带来了DataFrame
维度上的变化,因此属于变形操作。在第一节中提到的4种变形函数与其不同之处在于,它们都属于某一列或几列
元
素
\color{red}{元素}
元 素 和
列
索
引
\color{red}{列索引}
列 索 引 之间的转换,而不是索引之间的转换。
unstack
函数的作用是把行索引转为列索引,例如:
df = pd. DataFrame( np. ones( ( 4 , 2 ) ) ,
index = pd. Index( [ ( 'A' , 'cat' , 'big' ) ,
( 'A' , 'dog' , 'small' ) ,
( 'B' , 'cat' , 'big' ) ,
( 'B' , 'dog' , 'small' ) ] ) ,
columns= [ 'col_1' , 'col_2' ] )
df
col_1 col_2 A cat big 1.0 1.0 dog small 1.0 1.0 B cat big 1.0 1.0 dog small 1.0 1.0
df. unstack( )
col_1 col_2 big small big small A cat 1.0 NaN 1.0 NaN dog NaN 1.0 NaN 1.0 B cat 1.0 NaN 1.0 NaN dog NaN 1.0 NaN 1.0
unstack
的主要参数是移动的层号,默认转化最内层,移动到列索引的最内层,同时支持同时转化多个层:
df. unstack( 2 )
col_1 col_2 big small big small A cat 1.0 NaN 1.0 NaN dog NaN 1.0 NaN 1.0 B cat 1.0 NaN 1.0 NaN dog NaN 1.0 NaN 1.0
df. unstack( [ 0 , 2 ] )
col_1 col_2 A B A B big small big small big small big small cat 1.0 NaN 1.0 NaN 1.0 NaN 1.0 NaN dog NaN 1.0 NaN 1.0 NaN 1.0 NaN 1.0
类似于pivot
中的唯一性要求,在unstack
中必须保证
被
转
为
列
索
引
的
行
索
引
层
\color{red}{被转为列索引的行索引层}
被 转 为 列 索 引 的 行 索 引 层 和
被
保
留
的
行
索
引
层
\color{red}{被保留的行索引层}
被 保 留 的 行 索 引 层 构成的组合是唯一的,例如把前两个列索引改成相同的破坏唯一性,那么就会报错:
my_index = df. index. to_list( )
my_index[ 1 ] = my_index[ 0 ]
df. index = pd. Index( my_index)
df
col_1 col_2 A cat big 1.0 1.0 big 1.0 1.0 B cat big 1.0 1.0 dog small 1.0 1.0
try :
df. unstack( )
except Exception as e:
Err_Msg = e
Err_Msg
ValueError('Index contains duplicate entries, cannot reshape')
与unstack
相反,stack
的作用就是把列索引的层压入行索引,其用法完全类似。
df = pd. DataFrame( np. ones( ( 4 , 2 ) ) ,
index = pd. Index( [ ( 'A' , 'cat' , 'big' ) ,
( 'A' , 'dog' , 'small' ) ,
( 'B' , 'cat' , 'big' ) ,
( 'B' , 'dog' , 'small' ) ] ) ,
columns= [ 'index_1' , 'index_2' ] ) . T
df
A B cat dog cat dog big small big small index_1 1.0 1.0 1.0 1.0 index_2 1.0 1.0 1.0 1.0
df. stack( )
A B cat dog cat dog index_1 big 1.0 NaN 1.0 NaN small NaN 1.0 NaN 1.0 index_2 big 1.0 NaN 1.0 NaN small NaN 1.0 NaN 1.0
df. stack( [ 1 , 2 ] )
A B index_1 cat big 1.0 1.0 dog small 1.0 1.0 index_2 cat big 1.0 1.0 dog small 1.0 1.0
2. 聚合与变形的关系
在上面介绍的所有函数中,除了带有聚合效果的pivot_table
以外,所有的函数在变形前后并不会带来values
个数的改变 ,只是这些值在呈现的形式上发生了变化。
分组聚合操作,由于生成了新的行列索引,因此必然也属于某种特殊的变形操作,但由于聚合之后把原来的多个值变为了一个值,因此values
的个数产生了变化
三、其他变形函数
1. crosstab(统计特征)
crosstab
能实现的所有功能pivot_table
都能完成。在默认状态下,crosstab
可以统计元素组合出现的频数,即count
操作。例如统计learn_pandas
数据集中学校和转系情况对应的频数:
df = pd. read_csv( '../data/learn_pandas.csv' )
pd. crosstab( index = df. School, columns = df. Transfer)
Transfer N Y School Fudan University 38 1 Peking University 28 2 Shanghai Jiao Tong University 53 0 Tsinghua University 62 4
这等价于如下crosstab
的如下写法,这里的aggfunc
即聚合参数:
pd. crosstab( index = df. School, columns = df. Transfer, values = [ 0 ] * df. shape[ 0 ] , aggfunc = 'count' )
Transfer N Y School Fudan University 38.0 1.0 Peking University 28.0 2.0 Shanghai Jiao Tong University 53.0 NaN Tsinghua University 62.0 4.0
同样,可以利用pivot_table
进行等价操作,由于这里统计的是组合的频数,因此values
参数无论传入哪一个列都不会影响最后的结果:
df. pivot_table( index = 'School' ,
columns = 'Transfer' ,
values = 'Name' ,
aggfunc = 'count' )
Transfer N Y School Fudan University 38.0 1.0 Peking University 28.0 2.0 Shanghai Jiao Tong University 53.0 NaN Tsinghua University 62.0 4.0
从上面可以看出这两个函数的区别在于,crosstab
的对应位置传入的是具体的序列,而pivot_table
传入的是被调用表对应的名字,若传入序列对应的值则会报错。
除了默认状态下的count
统计,所有的聚合字符串和返回标量的自定义函数都是可用的,例如统计对应组合的身高均值:
pd. crosstab( index = df. School, columns = df. Transfer, values = df. Height, aggfunc = 'mean' )
Transfer N Y School Fudan University 162.043750 177.20 Peking University 163.429630 162.40 Shanghai Jiao Tong University 163.953846 NaN Tsinghua University 163.253571 164.55
2. explode(对列元素纵向展开)
explode
参数能够对某一列的元素进行纵向的展开,被展开的单元格必须存储list, tuple, Series, np.ndarray
中的一种类型。
df_ex = pd. DataFrame( { 'A' : [ [ 1 , 2 ] , 'my_str' , { 1 , 2 } , pd. Series( [ 3 , 4 ] ) ] ,
'B' : 1 } )
df_ex
A B 0 [1, 2] 1 1 my_str 1 2 {1, 2} 1 3 0 3 1 4 dtype: int64 1
df_ex. explode( 'A' )
A B 0 1 1 0 2 1 1 my_str 1 2 1 1 2 2 1 3 3 1 3 4 1
3. get_dummies(类别特征转为指示变量)
get_dummies
是用于特征构建的重要函数之一,其作用是把类别特征转为指示变量。例如,对年级一列转为指示变量,属于某一个年级的对应列标记为1,否则为0:
pd. get_dummies( df. Grade) . head( )
Freshman Junior Senior Sophomore 0 1 0 0 0 1 1 0 0 0 2 0 0 1 0 3 0 0 0 1 4 0 0 0 1