pandas_4 变形

import numpy as np
import pandas as pd

一、长表宽表的变形函数

长表 vs 宽表:一个表中把性别存储在某一个列中,那么它就是关于性别的长表;如果把性别作为列名,列中的元素是某一其他的相关特征数值,那么这个表是关于性别的宽表。下面的两张表就分别是关于性别的长表和宽表:

pd.DataFrame({'Gender':['F','F','M','M'], 'Height':[163, 160, 175, 180]})
GenderHeight
0F163
1F160
2M175
3M180
pd.DataFrame({'Height: F':[163, 160], 'Height: M':[175, 180]})
Height: FHeight: M
0163175
1160180

这两张表信息上完全等价,呈现方式与性别一列选择的布局模式有关,即以 l o n g \color{red}{long} long的状态存储还是以 w i d e \color{red}{wide} wide的状态存储。因此,pandas针对此类长宽表的变形操作设计了一些有关的变形函数。

1. pivot_长表变宽表(唯一性条件)

pivot是一种典型的长表变宽表的函数,首先来看一个例子:下表存储了张三和李四的语文和数学分数,现在想要把语文和数学分数作为列来展示。

df = pd.DataFrame({'Class':[1,1,2,2],
                   'Name':['San Zhang','San Zhang','Si Li','Si Li'],
                   'Subject':['Chinese','Math','Chinese','Math'],
                   'Grade':[80,75,90,85]})
df
ClassNameSubjectGrade
01San ZhangChinese80
11San ZhangMath75
22Si LiChinese90
32Si LiMath85

对于一个基本的长变宽操作而言,最重要的有三个要素,分别是变形后的行索引、需要转到列索引的列,以及这些列和行索引对应的数值,它们分别对应了pivot方法中的index, columns, values参数。新生成表的列索引是columns对应列的unique值,而新表的行索引是index对应列的unique值,而values对应了想要展示的数值列。

df.pivot(index='Name', columns='Subject', values='Grade')
SubjectChineseMath
Name
San Zhang8075
Si Li9085

利用pivot进行变形操作需要满足唯一性的要求,即由于在新表中的行列索引对应了唯一的value,因此原表中的indexcolumns对应两个列的行组合必须唯一

pandas1.1.0开始,pivot相关的三个参数允许被设置为列表,意味着会返回多级索引。例如:下表中六列分别为班级、姓名、测试类型(期中考试和期末考试)、科目、成绩、排名。

df = pd.DataFrame({'Class':[1, 1, 2, 2, 1, 1, 2, 2],
                   'Name':['San Zhang', 'San Zhang', 'Si Li', 'Si Li',
                              'San Zhang', 'San Zhang', 'Si Li', 'Si Li'],
                   'Examination': ['Mid', 'Final', 'Mid', 'Final',
                                    'Mid', 'Final', 'Mid', 'Final'],
                   'Subject':['Chinese', 'Chinese', 'Chinese', 'Chinese',
                                 'Math', 'Math', 'Math', 'Math'],
                   'Grade':[80, 75, 85, 65, 90, 85, 92, 88],
                   'rank':[10, 15, 21, 15, 20, 7, 6, 2]})
df
ClassNameExaminationSubjectGraderank
01San ZhangMidChinese8010
11San ZhangFinalChinese7515
22Si LiMidChinese8521
32Si LiFinalChinese6515
41San ZhangMidMath9020
51San ZhangFinalMath857
62Si LiMidMath926
72Si LiFinalMath882

现在想要把测试类型和科目联合组成的四个类别(期中语文、期末语文、期中数学、期末数学)转到列索引,并且同时统计成绩和排名:

pivot_multi = df.pivot(index = ['Class', 'Name'],
                       columns = ['Subject','Examination'],
                       values = ['Grade','rank'])
pivot_multi
Graderank
SubjectChineseMathChineseMath
ExaminationMidFinalMidFinalMidFinalMidFinal
ClassName
1San Zhang807590851015207
2Si Li85659288211562

根据唯一性原则,新表的行索引等价于对index中的多列使用drop_duplicates,而列索引的长度为values中的元素个数乘以columns的唯一组合数量(与index类似)。

2. pivot_table_(长变宽(不唯一时,聚合操作))

pivot的使用依赖于唯一性条件,那如果不满足唯一性条件,那么必须通过聚合操作使得相同行列组合对应的多个值变为一个值。例如,张三和李四都参加了两次语文考试和数学考试,按照学院规定,最后的成绩是两次考试分数的平均值,此时就无法通过pivot函数来完成。

df = pd.DataFrame({'Name':['San Zhang', 'San Zhang', 
                              'San Zhang', 'San Zhang',
                              'Si Li', 'Si Li', 'Si Li', 'Si Li'],
                   'Subject':['Chinese', 'Chinese', 'Math', 'Math',
                                 'Chinese', 'Chinese', 'Math', 'Math'],
                   'Grade':[80, 90, 100, 90, 70, 80, 85, 95]})
df
NameSubjectGrade
0San ZhangChinese80
1San ZhangChinese90
2San ZhangMath100
3San ZhangMath90
4Si LiChinese70
5Si LiChinese80
6Si LiMath85
7Si LiMath95

pandas中提供了pivot_table来实现,其中的aggfunc参数就是使用的聚合函数。上述场景可以如下写出:

df.pivot_table(index = 'Name',
               columns = 'Subject',
               values = 'Grade',
               aggfunc = 'mean')
SubjectChineseMath
Name
San Zhang8595
Si Li7590

aggfunc包含了 pandas_3 分组 博文中介绍的所有合法聚合字符串,此外还可以传入以序列为输入,标量为输出的聚合函数来实现自定义操作,上述功能可以等价写出:

df.pivot_table(index = 'Name',
               columns = 'Subject',
               values = 'Grade',
               aggfunc = lambda x:x.mean())
SubjectChineseMath
Name
San Zhang8595
Si Li7590

此外,pivot_table具有边际汇总的功能,可以通过设置margins=True来实现,其中边际的聚合方式与aggfunc中给出的聚合方法一致。下面就分别统计了语文均分和数学均分、张三均分和李四均分,以及总体所有分数的均分:

df.pivot_table(index = 'Name',
               columns = 'Subject',
               values = 'Grade',
               aggfunc='mean',
               margins=True)
SubjectChineseMathAll
Name
San Zhang8595.090.00
Si Li7590.082.50
All8092.586.25

3. melt_宽表变长表(列类别单一)

melt函数宽表转为长表。在下面的例子中,Subject以列索引的形式存储,现在想要将其压缩到一个列中。

df = pd.DataFrame({'Class':[1,2],
                   'Name':['San Zhang', 'Si Li'],
                   'Chinese':[80, 90],
                   'Math':[80, 75]})
df
ClassNameChineseMath
01San Zhang8080
12Si Li9075
df_melted = df.melt(id_vars = ['Class', 'Name'],
                    value_vars = ['Chinese', 'Math'],
                    var_name = 'Subject',
                    value_name = 'Grade')
df_melted
ClassNameSubjectGrade
01San ZhangChinese80
12Si LiChinese90
21San ZhangMath80
32Si LiMath75

meltpivot是一组互逆过程,那么就一定可以通过pivot操作把df_melted转回df的形式:

df_unmelted = df_melted.pivot(index = ['Class', 'Name'],
                              columns='Subject',
                              values='Grade')
df_unmelted # 下面需要恢复索引,并且重命名列索引名称
SubjectChineseMath
ClassName
1San Zhang8080
2Si Li9075
df_unmelted = df_unmelted.reset_index().rename_axis(columns={'Subject':''})
df_unmelted.equals(df)
# True

4. wide_to_long(宽变长(列为交叉类别))

melt方法中,在列索引中被压缩的一组值对应的列元素只能代表同一层次的含义,即values_name。现在如果列中包含了交叉类别,比如期中期末的类别和语文数学的类别,那么想要把values_name对应的Grade扩充为两列分别对应语文分数和数学分数,只把期中期末的信息压缩,这种需求下就要使用wide_to_long函数来完成。

df = pd.DataFrame({'Class':[1,2],'Name':['San Zhang', 'Si Li'],
                   'Chinese_Mid':[80, 75], 'Math_Mid':[90, 85],
                   'Chinese_Final':[80, 75], 'Math_Final':[90, 85]})
df
ClassNameChinese_MidMath_MidChinese_FinalMath_Final
01San Zhang80908090
12Si Li75857585
pd.wide_to_long(df,
                stubnames=['Chinese', 'Math'],
                i = ['Class', 'Name'],
                j='Examination',
                sep='_',
                suffix='.+')
ChineseMath
ClassNameExamination
1San ZhangMid8090
Final8090
2Si LiMid7585
Final7585

具体的变换过程由下图进行展示,属相同概念的元素使用了一致的颜色标出:

在这里插入图片描述

下面给出一个比较复杂的案例,把之前在pivot一节中多列操作的结果(产生了多级索引),利用wide_to_long函数,将其转为原来的形态。其中,使用了str.split函数,目前暂时只需将其理解为对序列按照某个分隔符进行拆分即可。

res = pivot_multi.copy()
res.columns = res.columns.map(lambda x:'_'.join(x))
res = res.reset_index()
res = pd.wide_to_long(res, stubnames=['Grade', 'rank'],
                           i = ['Class', 'Name'],
                           j = 'Subject_Examination',
                           sep = '_',
                           suffix = '.+')
res
Graderank
ClassNameSubject_Examination
1San ZhangChinese_Mid8010
Chinese_Final7515
Math_Mid9020
Math_Final857
2Si LiChinese_Mid8521
Chinese_Final6515
Math_Mid926
Math_Final882
res = res.reset_index()
res[['Subject', 'Examination']] = res['Subject_Examination'].str.split('_', expand=True)
res = res[['Class', 'Name', 'Examination', 'Subject', 'Grade', 'rank']].sort_values('Subject')
res = res.reset_index(drop=True)
res
ClassNameExaminationSubjectGraderank
01San ZhangMidChinese8010
11San ZhangFinalChinese7515
22Si LiMidChinese8521
32Si LiFinalChinese6515
41San ZhangMidMath9020
51San ZhangFinalMath857
62Si LiMidMath926
72Si LiFinalMath882

二、索引的变形

1. stack与unstack(行列索引之间变换)

在 pandas_2索引 博文中提到了利用swaplevel或者reorder_levels进行索引内部的层交换,下面就要讨论 行 列 索 引 之 间 \color{red}{行列索引之间} 的交换,由于这种交换带来了DataFrame维度上的变化,因此属于变形操作。在第一节中提到的4种变形函数与其不同之处在于,它们都属于某一列或几列 元 素 \color{red}{元素} 列 索 引 \color{red}{列索引} 之间的转换,而不是索引之间的转换。

unstack函数的作用是把行索引转为列索引,例如:

df = pd.DataFrame(np.ones((4,2)),
                  index = pd.Index([('A', 'cat', 'big'),
                                    ('A', 'dog', 'small'),
                                    ('B', 'cat', 'big'),
                                    ('B', 'dog', 'small')]),
                  columns=['col_1', 'col_2'])
df
col_1col_2
Acatbig1.01.0
dogsmall1.01.0
Bcatbig1.01.0
dogsmall1.01.0
df.unstack()
col_1col_2
bigsmallbigsmall
Acat1.0NaN1.0NaN
dogNaN1.0NaN1.0
Bcat1.0NaN1.0NaN
dogNaN1.0NaN1.0

unstack的主要参数是移动的层号,默认转化最内层,移动到列索引的最内层,同时支持同时转化多个层:

df.unstack(2)
col_1col_2
bigsmallbigsmall
Acat1.0NaN1.0NaN
dogNaN1.0NaN1.0
Bcat1.0NaN1.0NaN
dogNaN1.0NaN1.0
df.unstack([0,2])
col_1col_2
ABAB
bigsmallbigsmallbigsmallbigsmall
cat1.0NaN1.0NaN1.0NaN1.0NaN
dogNaN1.0NaN1.0NaN1.0NaN1.0

类似于pivot中的唯一性要求,在unstack中必须保证 被 转 为 列 索 引 的 行 索 引 层 \color{red}{被转为列索引的行索引层} 被 保 留 的 行 索 引 层 \color{red}{被保留的行索引层} 构成的组合是唯一的,例如把前两个列索引改成相同的破坏唯一性,那么就会报错:

my_index = df.index.to_list()
my_index[1] = my_index[0]
df.index = pd.Index(my_index)
df
col_1col_2
Acatbig1.01.0
big1.01.0
Bcatbig1.01.0
dogsmall1.01.0
try:
    df.unstack()
except Exception as e:
    Err_Msg = e
Err_Msg
ValueError('Index contains duplicate entries, cannot reshape')

unstack相反,stack的作用就是把列索引的层压入行索引,其用法完全类似。

df = pd.DataFrame(np.ones((4,2)),
                  index = pd.Index([('A', 'cat', 'big'),
                                    ('A', 'dog', 'small'),
                                    ('B', 'cat', 'big'),
                                    ('B', 'dog', 'small')]),
                  columns=['index_1', 'index_2']).T
df
AB
catdogcatdog
bigsmallbigsmall
index_11.01.01.01.0
index_21.01.01.01.0
df.stack()
AB
catdogcatdog
index_1big1.0NaN1.0NaN
smallNaN1.0NaN1.0
index_2big1.0NaN1.0NaN
smallNaN1.0NaN1.0
df.stack([1, 2])
AB
index_1catbig1.01.0
dogsmall1.01.0
index_2catbig1.01.0
dogsmall1.01.0

2. 聚合与变形的关系

在上面介绍的所有函数中,除了带有聚合效果的pivot_table以外,所有的函数在变形前后并不会带来values个数的改变,只是这些值在呈现的形式上发生了变化。

分组聚合操作,由于生成了新的行列索引,因此必然也属于某种特殊的变形操作,但由于聚合之后把原来的多个值变为了一个值,因此values的个数产生了变化

三、其他变形函数

1. crosstab(统计特征)

crosstab能实现的所有功能pivot_table都能完成。在默认状态下,crosstab可以统计元素组合出现的频数,即count操作。例如统计learn_pandas数据集中学校和转系情况对应的频数:

df = pd.read_csv('../data/learn_pandas.csv')
pd.crosstab(index = df.School, columns = df.Transfer)
TransferNY
School
Fudan University381
Peking University282
Shanghai Jiao Tong University530
Tsinghua University624

这等价于如下crosstab的如下写法,这里的aggfunc即聚合参数:

pd.crosstab(index = df.School, columns = df.Transfer, values = [0]*df.shape[0], aggfunc = 'count')
TransferNY
School
Fudan University38.01.0
Peking University28.02.0
Shanghai Jiao Tong University53.0NaN
Tsinghua University62.04.0

同样,可以利用pivot_table进行等价操作,由于这里统计的是组合的频数,因此values参数无论传入哪一个列都不会影响最后的结果:

df.pivot_table(index = 'School',
               columns = 'Transfer',
               values = 'Name',
               aggfunc = 'count')
TransferNY
School
Fudan University38.01.0
Peking University28.02.0
Shanghai Jiao Tong University53.0NaN
Tsinghua University62.04.0

从上面可以看出这两个函数的区别在于,crosstab的对应位置传入的是具体的序列,而pivot_table传入的是被调用表对应的名字,若传入序列对应的值则会报错。

除了默认状态下的count统计,所有的聚合字符串和返回标量的自定义函数都是可用的,例如统计对应组合的身高均值:

pd.crosstab(index = df.School, columns = df.Transfer, values = df.Height, aggfunc = 'mean')
TransferNY
School
Fudan University162.043750177.20
Peking University163.429630162.40
Shanghai Jiao Tong University163.953846NaN
Tsinghua University163.253571164.55

2. explode(对列元素纵向展开)

explode参数能够对某一列的元素进行纵向的展开,被展开的单元格必须存储list, tuple, Series, np.ndarray中的一种类型。

df_ex = pd.DataFrame({'A': [[1, 2], 'my_str', {1, 2}, pd.Series([3, 4])],
                      'B': 1})
df_ex
AB
0[1, 2]1
1my_str1
2{1, 2}1
30 3 1 4 dtype: int641
df_ex.explode('A')
AB
011
021
1my_str1
211
221
331
341

3. get_dummies(类别特征转为指示变量)

get_dummies是用于特征构建的重要函数之一,其作用是把类别特征转为指示变量。例如,对年级一列转为指示变量,属于某一个年级的对应列标记为1,否则为0:

pd.get_dummies(df.Grade).head()
FreshmanJuniorSeniorSophomore
01000
11000
20010
30001
40001
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值