PyTorch基础知识讲解(一)完整训练流程示例

Tutorial

大多数机器学习工作流程涉及处理数据、创建模型、优化模型参数和保存训练好的模型。本教程向你介绍一个用PyTorch实现的完整的ML工作流程,并提供链接来了解这些概念中的每一个。

我们将使用FashionMNIST数据集来训练一个神经网络,预测输入图像是否属于以下类别之一。T恤/上衣、长裤、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包或踝靴。

1. 数据处理

PyTorch有两个处理数据的方法:Torch.utils.data.DataLoaderTorch.utils.data.Dataset。Dataset存储了样本及其相应的标签,而DataLoader则围绕Dataset包装了一个可迭代的数据。

torchvision.datasets模块包含了许多真实世界的视觉数据的数据集对象,如CIFARCOCO。在本教程中,我们使用FashionMNIST数据集。每个TorchVision数据集都包括两个参数:transformtarget_transform,分别用来修改样本和标签。

import torch
from torchvision import datasets
from torchvision import transforms

train_data = datasets.FashionMNIST(root="D:/datasets/DL/", 
                                   train=True,
                                   download=True,
                                   transform=transforms.ToTensor())
test_data = datasets.FashionMNIST(root="D:/datasets/DL/", 
                                train=False,
                                download=True,
                                transform=transforms.ToTensor())

我们将数据集作为参数传递给DataLoader。这在我们的数据集上包裹了一个可迭代的数据集,并支持自动批处理、采样、洗牌和多进程数据加载。在这里,我们定义了一个64的批处理大小,即dataloader可迭代的每个元素将返回一个批次,包括64个元素的特征和标签。

from torch.utils.data import DataLoader

batch_size = 64
train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(train_data, batch_size=batch_size)

for X,y in train_dataloader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([64, 1, 28, 28])
Shape of y:  torch.Size([64]) torch.int64

2. 网络模型定义

为了在PyTorch中定义一个神经网络,我们创建一个继承自nn.Module的类。我们在__init__函数中定义网络的层,并在forward函数中指定数据将如何通过网络。为了加速神经网络的操作,如果有GPU的话,我们把它移到GPU上。

输入是28*28, 输出包含10个类

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device {
     device}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值