Tutorial
大多数机器学习工作流程涉及处理数据、创建模型、优化模型参数和保存训练好的模型。本教程向你介绍一个用PyTorch实现的完整的ML工作流程,并提供链接来了解这些概念中的每一个。
我们将使用FashionMNIST数据集来训练一个神经网络,预测输入图像是否属于以下类别之一。T恤/上衣、长裤、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包或踝靴。
1. 数据处理
PyTorch有两个处理数据的方法:Torch.utils.data.DataLoader
和Torch.utils.data.Dataset
。Dataset存储了样本及其相应的标签,而DataLoader则围绕Dataset包装了一个可迭代的数据。
torchvision.datasets
模块包含了许多真实世界的视觉数据的数据集对象,如CIFAR
、COCO
。在本教程中,我们使用FashionMNIST
数据集。每个TorchVision
数据集都包括两个参数:transform
和target_transform
,分别用来修改样本和标签。
import torch
from torchvision import datasets
from torchvision import transforms
train_data = datasets.FashionMNIST(root="D:/datasets/DL/",
train=True,
download=True,
transform=transforms.ToTensor())
test_data = datasets.FashionMNIST(root="D:/datasets/DL/",
train=False,
download=True,
transform=transforms.ToTensor())
我们将数据集作为参数传递给DataLoader。这在我们的数据集上包裹了一个可迭代的数据集,并支持自动批处理、采样、洗牌和多进程数据加载。在这里,我们定义了一个64的批处理大小,即dataloader可迭代的每个元素将返回一个批次,包括64个元素的特征和标签。
from torch.utils.data import DataLoader
batch_size = 64
train_dataloader = DataLoader(train_data, batch_size=batch_size)
test_dataloader = DataLoader(train_data, batch_size=batch_size)
for X,y in train_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
2. 网络模型定义
为了在PyTorch中定义一个神经网络,我们创建一个继承自nn.Module的类。我们在__init__函数中定义网络的层,并在forward函数中指定数据将如何通过网络。为了加速神经网络的操作,如果有GPU的话,我们把它移到GPU上。
输入是28*28, 输出包含10个类
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device {
device}