前言
基于GAN网络的条件生成任务用于图像恢复任务,在论文中主要针对运动去模糊。本文创新点主要有三个:①提出了一种新的条件生成GAN网络,生成器用的是金字塔模型搭建;②在生成器的主框架上使用了Inception-ResNet-v2和MobileNet;③在实验上这种方法对比其他的方法模型更小,计算速度更快,并且在结果上取得了不错的效果。
网络框架
网络整体框架主要如上,分为生成器和辨别器。生成器主要是基于U型结构的Inception-ResNet-v2和MobileNet,辨别器分为两个,第一个是全局辨别器,对整幅图片进行辨别;第二个是随机局部辨别器,将图片分成不同的patch,然后随机选取进行辨别,两者共同作用。
实验
论文分别在GoPro Dataset、Kohler dataset、DVD dataset、Lai dataset进行了实验,并且对比了不同的主框架结果,在PSNR、SSIM指标和计算速度上取得了相对不错的效果。
GoPro Dataset
Kohler dataset
DVD dataset
Lai dataset
消融实验
对比不同的模型结构和损失函数带来的结果,并且提出了一个新的混合数据集Restore Dataset。
总结
本文提出的方法是基于GAN的条件生成图像恢复任务,其实创新点不是很多,网络结构在现在看来也是直接参考的Resnet,不过在辨别器上提出了多尺度混合的方法并且取得了不错的效果。基于GAN的方法训练过程会比较复杂,但是文中没有给出在训练过程中遇到的困难和解决方法。