DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better 论文笔记

前言

基于GAN网络的条件生成任务用于图像恢复任务,在论文中主要针对运动去模糊。本文创新点主要有三个:①提出了一种新的条件生成GAN网络,生成器用的是金字塔模型搭建;②在生成器的主框架上使用了Inception-ResNet-v2和MobileNet;③在实验上这种方法对比其他的方法模型更小,计算速度更快,并且在结果上取得了不错的效果。

网络框架

 网络整体框架主要如上,分为生成器和辨别器。生成器主要是基于U型结构的Inception-ResNet-v2和MobileNet,辨别器分为两个,第一个是全局辨别器,对整幅图片进行辨别;第二个是随机局部辨别器,将图片分成不同的patch,然后随机选取进行辨别,两者共同作用。

实验

论文分别在GoPro Dataset、Kohler dataset、DVD dataset、Lai dataset进行了实验,并且对比了不同的主框架结果,在PSNR、SSIM指标和计算速度上取得了相对不错的效果。

GoPro Dataset

 Kohler dataset

DVD dataset

Lai dataset

消融实验

对比不同的模型结构和损失函数带来的结果,并且提出了一个新的混合数据集Restore Dataset。

总结

本文提出的方法是基于GAN的条件生成图像恢复任务,其实创新点不是很多,网络结构在现在看来也是直接参考的Resnet,不过在辨别器上提出了多尺度混合的方法并且取得了不错的效果。基于GAN的方法训练过程会比较复杂,但是文中没有给出在训练过程中遇到的困难和解决方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值