PSO变种策略——解决大规模问题:(1)CSO

本文介绍了一种名为竞争粒子群优化算法(CSO)的方法,该方法通过引入粒子间的竞争机制来改善传统粒子群优化算法(PSO)在解决大规模优化问题时易过早收敛的问题。CSO利用两个粒子群之间的竞争更新粒子状态,并采用变异策略提高全局搜索能力。此外,还提出了一种领域控制版本CSO-n,通过局部平均位置进一步增强了算法的多样性和搜索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一种用于大规模优化的竞争粒子群优化算法
一 PSO(粒子群优化算法)
论文从PSO改进而来。
粒子群包含一组粒子,每个粒子在一维搜索空间中具有位置和速度,代表要解决的优化问题的候选解。为了定位全局最优值,每个粒子的速度和位置使用以下等式迭代更新:
在这里插入图片描述

Pbest(t)个体最优解;gbest(t)全局最优解。
缺点:因Pbest(t),gbest(t)导致过早收敛。
二 CSO(竞争粒子群优化算法)
使用gbest(t),粒子的更新是由来自两个群的粒子之间的成对竞争机制驱动的。每次比赛后,失败者将根据胜利者群体的信息进行更新,而胜利者将使用变异策略进行更新。
在这里插入图片描述
在这里插入图片描述

Xk(t)为全局平均位置;
结果:CSO在大规模优化问题上表现惊人,优于许多为大规模优化定制的最新元启发式算法,对更高维的问题也能产生很好的效果。
三 CSO-n(竞争粒子群优化算法领域控制的影响)
与CSO不同的是Xk(t)为局部平均位置;
优点:邻居控制增强群体多样性以及搜索性能,这意味着,对于CSO只需要很少的粒子数就可以产生很多组合,计算复杂度降低,仅为O(mn),m种群大小,n代数。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值