计量经济实证第一步-应该注意什么?

  1. 注意结构安排:                                                                                                                         实证部分应按照如下顺序写,第一步是计量模型设定、第二步是变量定义与说明-可以采取表格的形式来呈现,在这其中不要忘记数据来源说明、第三步惯例进行描述性统计、第四步选择合适的方法进行基础回归结果、第五步进行稳健性检验、第六步进行异质性检验、机制检验(如果实证部分采用的是政策评估等其他方法,就按照这些方法的固定步骤展开,也可以相应创新,但基本思路不变)。
  2. 计量模型设定:                                                                                                                          计量模型设定的依据有两种:一是文章前面如果有理论模型推导的话,那么理论推导的最终模型就是计量模型的设定依据;二是现有研究,例如基于现有相关研究或某某模型,如果是这种情况,那么需要引用你所基于的文献(注意:这个文献应该是这个领域最为权威的,这将直接决定文章的水平)。                                                                                                        计量模型的设定对于文章实证部分是至关重要的,一定要在模型设定之时将所有可能变量考虑周全,对于自变量和因变量应当寻找最权威的衡量方法。如果有多种衡量方法,可以考虑在基础回归中使用一种最为常见的,而在稳健性检验中用其他方法验证结论是否稳健(作为稳健性检验的方式之一)                                                                                                        计量模型最好用公式编辑器,而变量则直接输入或者采用WORD插入符号或公式的方式输入,尽量不用Mathtype,因为如果使用Mathtype的话,行距就会变大。文章看上去这几行会很奇怪,可以注意一下!
  3. 变量定义与说明:                                                                                                                     英文变量名称不要使用X1、X2、X3这类在计量经济学课堂实验报告中才会使用的名称,而要用你所在领域常用的名称。可以查找这个领域的权威文献,借鉴前人的变量名称,不要使用拼音全拼。例如,资本的英文变量名称通常为Capital,不是Stock,也不是ZB。                  关于英文变量名称大小写的问题。一般而言,英文变量的写法有三种:一是全部小写,例如reform;二是首字母大写,例如Reform;三是全部大写,例如REFORM。前两种写法更为常见。另外,有些变量可能是若干个单词的缩写(例如TFP),或者专有名词(例如GDP),则不必按照英文变量大小写的规范,保持所有字母大写即可。但需要注意,同样是TFP,在正文中表示的是全要素生产率,但在计量模型中则表示的是一个变量。因此,在正文中TFP不是斜体,但在计量模型和表示变量时,TFP是斜体的。                                                关于英文变量名称的长度问题。有些变量的英文全称很长,例如高中及以上人数占比,英文名称是high school,但是如果作为变量名称的话太长了,这时可以使用这个单词的前几个字母表示,例如highsch在正文中变量的写法有两种:一是直接写英文变量名称(斜体),例如Size;二是写中文变量名称(英文变量名称),其中英文变量名称需要斜体,例如,企业规模(Size)。PS:1.在每个变量是如何衡量时,可以适当引用文献,以证明变量选择的可信性。2.并不是所有变量都要取自然对数,虚拟变量和百分比变量是不用取自然对数的。3.在说明变量定义的时候,还应当写出变量的单位,例如亿元、%,等等。4.如果文章变量过多,可以用一张变量定义表适当说明,但这个不是必须的。
  4. 数据来源说明:                                                                                                                            这部分应当对文章使用所有变量的数据来源加以说明,数据来源包括但不限于各种数据库、统计年鉴、调查数据,等等。且需详细说明数据的清理原则和过程,以确保数据可信。另外,对于一些较为独特的数据,例如调查数据,可以在这部分适当介绍数据结构。数据是实证的根本。一些基础实证可以选择国别面板、省份面板、城市面板、微观企业、微观个体等数据。切忌使用一个国家或地区的时间序列数据,样本量太少,无法开展相关的检验。
  5. 描述性统计:                                                                                                                            描述性统计的作用是告诉论文评阅人,数据结构是合理的,数据是可靠的。因此,要重点查看每个变量的均值、最大值和最小值,以判断数据是否异常。例如,在某个省份数据的检验中,二产比重的最大值是1.124,这就需要引起注意,一定是数据出问题了。                         PS:描述性统计,以及后面的实证检验结果报告中,一般都要保留相同的小数点位数,一般是小数点后三位或者四位。
  6. 回归结果的呈现:                                                                                                                       首先不能直接把计量软件输出的回归表格截图粘贴到文章中,而要自己制作回归表格。         这部分内容经常出现的问题之二:参数不翻译。回归中一些主要参数,需要翻译成中文,例如样本量不能用N表示,但也不是绝对的,有些变量是英文缩写,就不必翻译,例如R2。      这部分内容经常出现的问题之三:回归不合并。有些论文做了很多张回归表格,但每张表格都只是一个回归,例如表1是东部地区回归结果,表2是中部地区回归结果,表3是西部地区回归结果,这样的三张表格看起来内容都十分单薄,遇到这种情况,需要把内容相似的表格内容合并到一张表中,即分别用三列展示东中西部的回归结果。
  7. 稳健性检验:                                                                                                                            为了通过替换变量、调整样本、替换回归方法等方法,得到与基础回归相同的结果,以证明基础回归结果是稳健的。因此,在稳健性检验中,我们希望看到回归结果都与基础回归一致。对于稳健性检验,常用方法有九种,之后会一一研究并梳理举例。
  8. 异质性检验:                                                                                                                            通过分组回归,发现在不同的样本组中,回归结果是有差异的。例如,将样本分为国有和民营两组,分别重复基础回归,发现研发支出对国有企业和民营企业效率的影响是不同的。这种不同可能是研发支出变量在国有企业的回归中不显著,而在民营企业的回归中显著;还可能是研发支出变量在两组回归中都是显著的,但显著性水平不同;还可能是研发支出变量在两组回归中都是显著的,且显著性水平相同,但弹性不同。总之,在异质性检验中,我们希望得到的结果是在不同样本组中,回归结果是有差异的,并不需要每个回归都十分显著。      最后,很多文章认为把回归结果做出来、写出来就万事大吉了,其实对回归结果的说明和分析更为重要。对回归结果的分析包括三部分:一是对结果的描述,即是否显著、符号正负等;二是对结果的比较,即这个结果是否与现有研究一致;三是对结果的拓展,进一步展开讨论回归结果的现实意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值