2021年北京大学数学科学学院本科生教学手册

文章目录


北京大学数学科学学院

一、学院简介

(其余略)

学院下设四个系:【数学系、概率统计系、信息与计算科学系和金融数学系】。 (其余略)

学院拥有五个本科生专业:【数学与应用数学、统计学、应用统计学、信息与计算科学以及 数据科学与大数据技】。全院的教学工作由负责教学的副院长统一主抓,一流的教学管理人员 为全员做好细致专业的教学保障工作。(其余略)

二、本科专业及专业方向

专业代码专业名称英文名称学制授予学位
070101数学与应用数学Pure and Applied Mathematics4年理学学士
071201统计学Statistics4年理学学士
070102信息与计算科学Information and Computational Sciences4年理学学士
080910T数据科学与大数据技术Data Science and Big Data Technology4年理学学士
071202应用统计学Applied Statistics4年理学学士

三、教学行政管理人员(略)


北京大学数学科学学院 数学与应用数学专业培养方案

一、 专业简介

北京大学数学科学学院的数学与应用数学专业包含基础数学和金融数学两个方向。基础 数学方向为宽口径培养综合性数学人才打基础。具体专业方向有: 数论、代数、拓扑、微分几何、函数论、动力系统、微分方程、数学物理、应用数学等等

(其余略)

二、培养目标(略)

三、培养要求:基础数学方向与金融数学方向培养要求(略)

四、毕业要求及授予学位类型(略)

五、课程设置(略)


主要课程介绍

数学分析(I, II, III)

课程号:00132301,00132302,00132304
课程名称:数学分析(I, II, III)
开课学期:秋季开始(三学期)
学分:5+5+5(4+2)
先修课程:
基本目的:本课程是数学类各专业最重要的基础课之一。基本内容包括极限论、微分学、积分学、级数理论。本课程是许多后继课程如微分方程、微分几何、复变函数、实变函数、概率论、基础物理、理论力学等学习的基础。数学分析同时也是大学数学的基本能力及思维方法的训练重要课程。具有良好的数学分析的基础对于今后的学习和研究起着关键的作用。

内容提要:

第一部分 一元微积分学

一.函数
实数理论简介,确界存在定理,函数概念与基本性质,初等函数

二.序列极限
序列极限定义,无穷小量与无穷大量,序列极限的性质,单调有界序列,实数系连续性的基本定理,Cauchy收敛准则,序列的上、下极限

三.函数的极限与连续性
函数极限的定义与推广;函数极限的性质,数列极限与函数极限的关系;函数极限存在性定理及两个重要极限;函数的连续与间断;连续函数的基本性质与初等函数的连续性;闭区间连续函数的性质;一致连续函数;无穷小量与无穷大量的阶

四.导数和微分
导数的引入与定义;单侧导数;求导的方法;微分的定义与一阶微分的形式不变性;高阶导数与高阶微分

五.导数的应用
微分中值定理;del′Hospitale法则(洛必达法则);泰勒公式;利用导数研究函数

六.不定积分
原函数;不定积分;第一与第二换元法;分部积分法;一些常见函数的不定积分、有理函数积分

七.定积分
定积分概念与微积分基本定理;定积分的几何意义;可积的必要条件,Daboux理论(达布理论)与可积函数类;定积分的性质;变限积分;定积分的计算;换元法、分部积分法;定积分第一、 二中值定理;定积分的几何应用与简单物理应用

第二部分 级数理论

一.数项级数
数项级数的概念;柯西准则;条件收敛与绝对收敛性;正项级数收敛的基本判别法;任意级数收敛的基本判别法;数项级数的性质(交换律,结合律,分配律);无穷乘积

二.函数序列与函数级数
函数数列与级数研究的基本问题; 一致收敛性的定义; 一致收敛的 柯西准则及其判别法;一致收敛性的极限函数的性质

三.幂级数
幂级数的收敛半径与收敛域;幂级数的性质;初等函数的幂级数展开;求泰勒展开式的方法;Weierstrass逼近定理

四.傅立叶级数
基本三角函数系;周期函数傅立叶级数;傅立叶级数的点收敛;狄利克雷积分与收敛的判别法;傅立叶级数的均方收敛,Parseval等式;一致收敛

第三部分 多元微积分

一. Rn 中的点集拓扑初步,连续函数
R m R_m Rm中的点集拓扑初步;多元函数的极限与连续性

二.多元函数微分学
偏导数;全微分;微分的几何意义;高阶偏导数;隐函数求导;方向导数与梯度;泰勒公式;向量函数求导

三.隐函数定理
隐函数定理;逆变换定理

四.多元函数的极值问题
普通极值问题;条件极值问题;拉格朗日乘子法;最小二乘法

五.重积分
重积分的定义;重积分的存在性与性质;重积分的计算:化为累次积分与重积分的变量替换 ,广义重积分

六.曲线积分, 曲面积分与场论初步
第一型与第二型曲线积分;第一型与第二型曲面积分;格林公式;高斯公式;斯托克斯公式;曲线积分与路径无关; ∗ \ast 微分流形初步:微分形式;外微分;微分形式的拉回;微分流形;微分流形上微分形式的积分;斯托克斯公式

教材及参考书:

  1. 伍胜健,《数学分析(I, II, III)》,北京大学出版社 (待出版)
  2. 方企勤等,《数学分析(1,2,3)》, 高等教育出版社
  3. 彭立中,谭小江,《数学分析(1,2,3)》,高等教育出版社

高等代数I

课程号:00132321
课程名称:高等代数I
开课学期:秋季
学分:5
先修课程:
基本目的:1.使学生学习并掌握线性方程组、矩阵、行列式、线性空间、线性变换(映射)等知识;2. 鉴于现代代数学的主要内容是研究抽象的代数结构的性质,本课程着重培养学生由具体对象出发抽象出具有普遍性的概念、通过抽象思维和推理解决实际问题的初步能力。

内容提要:下面打 ∗ \ast 部分为选学内容

一、引言与预备知识

代数系统,数域,集合与映射,代数学基本定理,求和号与乘积号,线性方程组,消元法。

二、向量空间与矩阵

n维向量空间,向量组的线性相关与线性无关,极大线性无关组与秩,矩阵的秩,线性方程组理论,矩阵运算,方阵,初等矩阵,逆矩阵,分块矩阵。

三、行列式

线性空间的基本概念,基与维数,坐标,基变换,坐标变换公式,子空间,子空间的交与 和,维数公式,子空间的直和,商空间。

四、线性空间

线性空间的基本概念,基与维数,坐标,基变换,坐标变换公式,子空间,子空间的交与 和,维数公式,子空间的直和,商空间。

五、线性变换

线性映射的基本概念,同构映射,线性映射的像与核,维数关系,线性映射的运算与矩阵; 线性变换的基本概念,线性变换的运算,线性变换在不同基下的矩阵,相似矩阵,特征值与特征向量,线性变换可对角化的条件,不变子空间,不变子空间的商空间上的诱导变换。


高等代数II

课程号:00132323
课程名称:高等代数II
开课学期:春季
学分:4
先修课程:高等代数I,解析几何
基本目的:让学生加深对线性代数的理解,能够把上学期学过的具体概念,演算应用到更一般的线性空间, 线性变换,双线性函数,同时能利用抽象的线性空间,线性变换,双线性函数等概念来解决具体的问题。

内容提要:下面打 ∗ \ast 部分为选学内容

一、一元多项式环

欧几里得算法判断多项式的整除, 求最大公因式, 多项式的因式分解的存在唯一性;复数域,实数域上的不可约多项式与代数学基本定理,有理数上的因式分解(Gauss引理, Eisenstein判别法)多项式方程的根与系数的关系, 判别式的推广与它的计算——多元对称多项式的表示。

二、多项式环的矩阵环与矩阵的相似标准型

哈密顿凯莱定理, 矩阵的极小多项式, 多项式矩阵的相抵标准型的存在唯一证明(可逆多项式矩阵, 初等多项式矩阵), 矩阵相似的判别法, 矩阵的极小多项式, 矩阵的特征矩阵的相抵标准型与矩阵的相似标准型, 复数域上的矩阵的若尔当标准型

三、线性空间与线性变换(映射)
四、线性变换的Jordan标准型(映射)
五、线性空间的对偶空间与线性空间的双线性函数
六、带度量的空间

欧氏空间和它的线性变换,实双曲空间,实度量空间的Witt分解定理,一般度量空间的Witt分解定理,辛空间

教材及参考书:

  1. 北京大学数学力学系几何与代数教研室代数小组:高等代数,高等教育出版社,1984年(第 6 次印刷)
  2. 蓝以中《高等代数简明教程(上、下册)》和《高等代数学习指导书》,北京大学出版社,2003(第 2 次印刷)
  3. 丘维声《高等代数(第二版)》下册,高等教育出版社,2002 年
  4. 丘维声《高等代数习题解析》,北京大学出版社,2021年8月

抽象代数

课程号:0013545
课程名称:抽象代数
开课学期:秋季
学分:3
先修课程:高等代数I,高等代数II
基本目的:1. 使学生掌握抽象代数的基本概念,基本理论,基本方法,受到抽象代数的基本训练;2. 培养学生数学的思维方式。

内容提要:下面打 ∗ \ast 部分为选学内容

一、引言

抽象代数的研究对象,群、环、域的概念和简单性质。

二、群

群的典型例子,对称群及交错群,子群,陪集,Lagrange定理,正规子群和商群,群的同构与同态,群的直积,群同态基本定理,循环群,换位子群,可解群,单群,群的自同构,群 在集合上的作用,Cayley定理,共轭类,p-群,轨道-稳定子定理,Sylow定理,有限 Abel 群的结构, ∗ \ast 合成群列, ∗ \ast 自由群, ∗ \ast 群的定义关系, ∗ \ast 正多面体和有限旋转群。

三、环

环的类型和例,域的特征,子环和理想,商环,环同态基本定理,环的直和,中国剩余定理,素理想和极大理想,域的构造, ∗ \ast 分式域,唯一因子分解整环,主理想整环,Euclid 整环, 唯一因子分解整环上的多项式环。

四、域扩张

域扩张,有限扩张,代数扩张,单扩张,尺规作图问题,分裂域,正规扩张,有限域,可分扩张,域扩张的自同构,Galois群,Galois理论简介, ∗ \ast 代数方程可根式解问题。

∗ \ast 五、模与格简介

模的定义与例,子模与商模,模的同态与同构,格的定义与例,模格与分配格,Boole代数。

教材及参考书:

  1. 丘维声《抽象代数基础》,高等教育出版社,2003年
  2. 赵春来、徐明曜《抽象代数 I》,北京大学出版社,2008年
  3. 聂灵沼、丁石孙《代数学引论(第二版)》,高等教育出版社,2000年

几何学

课程号:00132341
课程名称:几何学
开课学期:秋季
学分:5
先修课程:
基本目的:培养学生的几何思想,加强学习几何素质的重要任务;它是学生在中学阶段平面解析几何知识的延伸和扩展,同时也为学生在本科阶段的多元微积分、物理学等课程打下坚实的基础。该课程也为从事现代微分几何级相关领域的研究做一些准备。

内容提要:下面打 ∗ \ast 部分为选学内容

一、向量代数

向量,向量的加法,向量的数量乘积,向量的分解,向量的线性运算和应用,向量的内积、外积和体积(混和积),向量代数的应用。

二、空间解析几何

仿射坐标系,单位直角坐标系,坐标与方程,平面方程,直线方程,平面、直线间的位置 关系,点到直线、平面的距离,异面直线间的公垂线及夹角,球面,旋转面,柱面,锥面,二次曲面,直纹面。

三、二次曲线的分类

平面和空间仿射坐标变换,平面和空间单位直角坐标变换,圆锥曲线,平面二次曲线,二 次曲线的不变量,二次曲线的分类,二次曲线的中心、对称轴、切线和渐近线 ∗ \ast ,二次曲面的分类定理简介。

四、等距变换和仿射变换

平面和空间的变换,平面间的1-1映射,平面和空间的等距变换,平面间的等距映射,平面上的直线反射、旋转和平移,空间中的平面反射、旋转和平移,平面和空间图形的对称群, 平面和空间的仿射变换,仿射变换诱导的向量空间的线性变换,仿射变换的不变性质、不变量,仿射变换的坐标表示,等距变换的坐标表示。

五、射影几何初步

中心投射,Desarques定理,Pappus定理,射影平面,射影变换,点线对偶,交比,圆锥曲线的射影理论,配极,射影坐标系及其应用。

六、双曲几何初步

平面和空间的反演变换,平面Mobius变换群,复分式变换,复交比,双曲平面,双曲度量,双曲变换群,双曲三角形正弦、余弦和面积公式。

教材及参考书:

  1. 尤承业,《解析几何》,北京大学出版社。
  2. 丘维声,《解析几何》,北京大学出版社。
  3. 吴光磊、田畴,《解析几何简明教程》,高等教育出版社。

概率论

课程号:0013300
课程名称:概率论
开课学期:春季
学分:3
先修课程:数学分析,高等代数
基本目的:1、对随机现象有充分的感性认识和比较准确的理解。2、联系实际问题,初步掌握处理不确定性事件的理论和方法。

内容提要:下面打 ∗ \ast 部分为选学内容

一、古典概型与概率空间

随机事件,古典概型几何概型,概率空间,概率的性质,条件概率,乘法公式,独立性,全概率公式贝叶斯公式。

二、随机变量与概率分

一维随机变量定义,离散型随机变量,连续型随机变量概率分布函数,随机变量函数的分布。

三、随机向量及其分布

离散型随机向量及其分布,连续型随机向量及其联合密度,随机向量函数的分布,随机变量独立性定义,条件分布和条件密度。

四、数学期望与方差

数学期望,方差,协方差与相关系数,条件数学期望与最佳预测。

五、概率极限理论

概率母函数,特征函数,弱大数定律,强大数定律Borel-Cantalli引理,中心极限定理,随机变量四种收敛性定义及相互关系介绍。

教材及参考书:

  1. 汪仁官, 《概率论引论》,北京大学出版社1994
  2. 何书元, 《概率论》,北京大学出版社2005
  3. 李贤平,《概率论基础》(第二版), 高等教育出版社,1997
  4. 钱敏平、叶俊,随机数学,高等教育出版社,2000

常微分方程

课程号:00132340
课程名称:常微分方程
开课学期:春季
学分:3
先修课程:数学分析,高等代数、解析几何
基本目的:常微分方程是综合性大学数学系各专业的重要基础课,也是应用性很强的一门数学课。本课程的目的是学习和掌握常微分方程的基本知识,并为后行课(数理方程、微分几何、 泛函分析等)作好准备;通过穿插的实例(特别是在历史上成功地利用微分方程解释实际现象的著名范例)培养学生利用数学理论解决实际问题的意识和初步能力。

内容提要:下面打 ∗ \ast 部分为选学内容

一、基本概念

微分方程及其解的定义,解的几何解释

二、初等积分法

恰当方程,变量分离的方程,齐次方程、伯努里方程、黎卡提方程,积分因子法,一阶线性方程,一阶隐式微分方程的解法,Clairaut方程

三、存在唯一性定理

Lipschitz条件, Picard迭代序列,Picard定理,Peano定理(叙述不证明),解的最大存在区间, 解的延伸定理,解对初值和参数的连续依赖性定理,连续可微性定理(叙述不证明),对初值和参数的导数满足的微分方程。

四、线性方程

解的线性相关、线性无关,齐次方程组解的结构,基本解矩阵,Wronsky行列式, Liouville公式,常数变易法,解的通解公式;常系数线性方程组和常系数高阶线性方程的解 法, 矩阵指数函数 exp(Ax),待定指数函数法。

五、非线性高阶微分方程

首次积分的定义和性质,首次积分的存在性, 数学摆,二体问题。

六、幂级数解法

Cauchy 定理, 幂级数解法, 广义幂级数解法。

七、边值问题

Sturm 比较定理, 二阶方程解的振动性的判别, Sturm-Liouville边值问题: 特征值,特征函数,特征函数的正交性

教材及参考书:

  1. 丁同仁,李承治《常微分方程教程》,高等教育出版社。
  2. 王高雄、周之铭、朱思铭、王寿松《常微分方程(第二版)》,高等教育出版社。
  3. 叶彦谦《常微分方程讲义(第二版)》,人民教育出版社。
  4. M. Braun, Differential Equations and Their Applications, Springer-Verlag.
  5. E. L. Ince, Ordinary Differential Equations, Dover, New York.

复变函数

课程号:00132320
课程名称:复变函数
开课学期:春季
学分:3
先修课程:数学分析,高等代数
基本目的:复变函数是为数学学院各个专业开设的一门重要基础课. 通过课程学习使得同学 理解和掌握复变函数的基本理论,进一步加强对数学抽象思维, 逻辑推理和计算能力的训练, 体会复变函数所表现的数学理论的优美之处,了解复变函数理论的相关应用。

内容提要:下面打 ∗ \ast 部分为选学内容

一、复数及扩充复平面

复数的表示和运算,复平面的完备性,复变量,圆和直线方程及其对称点,扩充复平面,复值连续函数。

二、解析函数定义及基本性质

复函数关于复变量的导数, 导数的几何意义,Cauchy-Riemann方程,单连通区域上处处 不为零的解析函数的对数和根式,分式线性变换,初等解析函数,简单Riemann面。

三、柯西定理和柯西公式

路径积分,格林公式与柯西定理,柯西公式,解析函数局部幂级数展开的存在 性,幂级数的简单应用,解析函数的零点孤立性和解析函数唯一性定理,Morera定理,平均值定理,最大模原理和Schwarz引理,单位圆盘的解析自同胚群,非欧几何简介。

四、洛朗级数

环形区域上解析函数的Laurent级数,孤立奇点分类,亚纯函数,复平面和扩充复平面的解析自同胚群。

五、留数定理和辐角原理

留数定义及其计算,幅角原理,Rouche定理,解析函数的零点个数估计,单叶解析函数性质, 解析函数的开映射定理,利用留数定理计算某些特殊定积分。

六、解析开拓

解析开拓的幂级数方法, 延曲线的解析开拓, 解析开拓与路径的关系, 单值性定理, 对称原理。

七、黎曼映射定理

正规族和Montel定理,Riemann映射定理。

八、调和函数简介

Poisson公式,次调和函数,Dirichlet问题。

教材及参考书:

  1. 谭小江、伍胜健《复变函数简明教程》,北京大学出版社。
  2. 龚升《简明复分析》,北京大学出版社。
  3. 叶彦谦《常微分方程讲义(第二版)》, 人民教育出版社。
  4. Ahlfors,L.V. Complex Analysis,3rd ed. MoGraw Hill.NewYork.1979.

数学模型

课程号:00130200
课程名称:数学模型
开课学期:春季
学分:3
先修课程:数学分析,高等代数
基本目的: 通过典型数学模型和算法分析,使学生基本掌握运用数学知识建立数学模型来解决 实际问题的基本技能。注重实际能力的培养,要求学生具备一定的实际建模能力,提高学生的综合素质。

内容提要:下面打 ∗ \ast 部分为选学内容

一、序言
二、线性规划模型

2.1 线性规划模型建立和标准化
2.2 单纯形法
2.3 线性规划相关问题
2.4 整数规划和分枝定界法

三动态规划模型与 DNA 序列联配(Alignment)

3.1 动态规划模型和求解过程
3.2 动态规划应用举例(生产计划和 DNA 序列联配)

四、图论模型

4.1 图论简介
4.2 最大流问题
4.3关键路径分析

五、种群生态学(Population Dynamics)
六、传染病模型
七、马氏模型与隐马氏模型

7.1 马氏模型及其应用
7.2 隐马氏模型及其理论

八、分类模型

8.1 人工神经网络模型 (ANN)
8.2 决策树 (Decision Tree)
8.3 判别分析 (LDA)
8.4 支持向量机

九、随机模拟
十、奇异值分解及其应用
十一、层次分析方法

教材及参考书:

  1. 雷功炎《数学模型讲义》,北京大学出版社,1999。
  2. 姜启源《数学模型》,高等教育出版社,1987 第一版,1993 第二版,2003 第三版。
  3. 刘来福、曾文艺《数学模型与数学建模》,北京师范大学出版社,1997第一版,2002第二版。
  4. 谭永基,俞文(鱼此)《数学模型》,复旦大学出版社,1997。
  5. 王树禾《数学模型基础》,中国科学技术大学出版社,1996。
  6. W.F.Lucas《微分方程模型》,国防科技大学出版社,1988。
  7. W.F.Lucas《生命科学模型》,国防科技大学出版社,1996。
  8. W.F.Lucas《离散与系统模型》,国防科技大学出版社,1996
  9. W.F.Lucas《政治及有关模型》,国防科技大学出版社,1996。

应用数学导论

课程号:001313670
课程名称:应用数学导论
开课学期:春季
学分:3
先修课程:数学分析,线性代数
基本目的:阐释应用书的基本理念和基本的手段, 通过具体的算法和分析手段强调与其基础数学的不同价值观,使学生会欣赏应用数学之美和适应应用数学的思维方式。

内容提要:

  • Lect1 Introduction
Part1: Basic Numerics
  • Lect2 Lagrange and Newton Interpolation
  • Lect3 Spline interpolation
  • Lect4 Least squares fitting
  • Lect5 Numerical integration: basics
  • Lect6 Gaussian quadrature
  • Lect7 Adaptive integration and advanced topics
  • Lect8 Simple iteration methods for solving linear system
  • Lect9 Advanced iteration methods
  • Lect10 Eigenvalue problems
  • Lect11 BVP problem for ODE
  • Lect12 Newton`s method for solving nonlinear equations
  • Lect13 FFT
  • Lect14 Basic Monte Carlo methods
  • Lect15 Metropolis algorithm
  • Lect16 Simulated annealing and genetic algorithm
  • Lect17 Stochastic Simulation Algorithm (SSA)
Part II: Basic asymptotics
  • Lect18 Laplace asymptotics
  • Lect19 Stationary phase approximation
  • Lect20 Regular perturbation method
  • Lect21 Method of averaging
  • Lect22 Singular perturbation method

教材及参考书:

  1. 张平文,李铁军:《数值分析》,北京大学出版社。
  2. 徐树方,高立,张平文:《数值线性代数》,北京大学出版社。

机器学习基础

课程号:00137170
课程名称:机器学习基础
开课学期:春季
学分:3
先修课程:高等数学,线性代数,概率论与数理统计
基本目的:面向数学科学学院应用数学相关专业本科生开设,旨在介绍机器学习的基本问题、 方法、模型、算法和相关理论基础,为学生进一步从事机器学习领域相关研究和应用提供基础。

内容提要:

一、理论基础

1 统计学习框架:算法与推理,频率派和贝叶斯推理,经验最小
2 PAC 学习理论
3 一致收敛理论
4 Bias-complexity Trade-off
5 Rademacher Complexity and VC-dimension
6 Non-uniform Learnability
7 Algorithmic Complexity

二、模型与算法

1 线性与广义线性模型
2 凸学习模型
3 模型选择与验证
4 正则化与稳定性
5 随机梯度算法
6 Kernel Methods
7 Boosting
8 SVM
9 决策树与随机森林
10 Jackknife 和 Bootstrap

三、专题选讲

1 在线学习
2 聚类与降维
3 生成模型
4 特征选择与泛化
5 Multiclass
6 Ranking

教材及参考书:

  1. 周志华:《机器学习》,清华大学出版社,2016 第一版。

实变函数

课程号:00132370
课程名称:实变函数
开课学期:秋季
学分:3
先修课程:数学分析
基本目的:以Lebesgue测度与Lebesgue积分理论为核心内容,为学生提供近代分析的基础知识和基本训练,提高分析论证能力。

内容提要:

一、集合与欧氏空间的点集
  1. 集合,集合列的(上、下)极限集
  2. 集合的基数,可数集,连续基数
  3. 欧氏空间 ,Borel集,Cantor集
二、勒贝格测度
  1. Lebesgue外测度
  2. 可测集及其性质
  3. 可测集与Borel集的关系
  4. 不可测集介绍
三、可测函数与可测函数列的收
  1. 可测函数及其运算
  2. 几乎处处收敛与依测度收敛,Егоров定理
  3. Лузин定理(Lusin 定理,卢津定理)
四、勒贝格积分
  1. 非负可测函数的积分,Levi引理,Fatou引理
  2. 一般可测函数的积分,积分的绝对连续性,Lebesgue控制收敛定理
  3. 积分平均连续性
  4. Lebesgue积分与 Riemann积分的关系,Riemann 可积函数的充分必要条件
  5. 重积分与累次积分,Fubini定理
五、微分与积分的关
  1. 单调函数几乎处处可微
  2. 有界变差函数
  3. 变上限积分,绝对连续函数,微积分基本定理。
六、Lp空间
  1. Lp空间,Hölder不等式(赫尔德不等式),Minkowski不等式
  2. Lp空间中的收敛与完备性,可分性,平均连续性
  3. L2空间的内积,正交系与广义傅立叶级数,Bessel不等式与Paseval等式

教材及参考书:

  1. 周民强《实变函数论》,北京大学出版社,2008 年 5 月。
  2. 徐森林《实变函数论》,中国科技大学出版社,2002 年 2 月。

微分几何

课程号:00132310
课程名称:微分几何
开课学期:秋季
学分:3
先修课程:数学分析、高等代数、常微分方程
基本目的:学习和掌握空间曲线和曲面的基本知识,培养学生的几何直观能力,以及应用分析、 代数等工具来研究、解决几何问题的能力,为学习微分流形、黎曼几何等课程打好基础。

内容提要:

一、预备知识
  1. R3 中的几何结构:平面反射,旋转群,平移群,刚体运动群。
  2. R3 中的代数结构:内积,外积。
二、曲线论
  1. 正则参数曲线,可容许参数变换,曲线的切线,曲线的定向,弧长公式和弧长参数。
  2. 曲线的曲率,曲线的单位切向量,主法向量,次法向量,Frenet标架。
  3. 曲线的挠率,Frenet 公式,一般参数下曲率、挠率和Frenet公式的计算。
  4. 曲线在一点处的近似曲线,切触阶。
  5. 曲线论基本定理及其证明。
  6. 平面曲线的相对曲率,平面曲线的等周不等式,旋转指标定理。
三、曲面的第一基本形式
  1. 正则参数曲面,可容许的参数变换,曲面的定向。
    2)曲面的切平面,切向量,法线,单位法向量,自然标架。
  2. 曲面的第一基本形式,切向量的长度和夹角,曲面的面积。
  3. 曲面上的向量场,曲面上的参数曲线网。
    5)曲面间的可微映射,可微映射诱导的切映射,曲面间保长对应、保角对应。
  4. 可展曲面的例子,直纹面可展的条件,可展面的分类,可展面和平面的保长对应。
四、曲面的第二基本形式
  1. 曲面的第二基本形式,平面和球面的特征。
  2. 曲面上沿切方向的法曲率,渐近方向。
    3)Gauss 映射,Weingarten 算子,主曲率和主方向,法曲率的Euler 公式,曲率线。
  3. 主曲率和主方向的计算,平均曲率和高斯曲率。
  4. 曲面在一点处的近似曲面,Dupin标形。
  5. 常高斯曲率曲面,常中曲率曲面,极小曲面。
五、曲面论基本定理
  1. 曲面的Gauss方程,Weingarten方程,Christoffel符号。
  2. 一阶偏微分方程的可积性条件,曲面不变量的Gauss方程,Codazzi方程。
  3. 曲面论基本定理:存在性和唯一性。
  4. Gauss定理:Gauss曲率在保持变换下不变。Gauss曲率为零的曲面一定是可展面。
六、测地曲率和测地线
  1. 曲面上的曲线,测度曲率,测度挠率,测地曲率的Liouville公式。
  2. 测地线,测地线的微分方程,弧长的第一变分,测地线作为长度泛函的临界曲线。
  3. 测地平行坐标系,测地极坐标系,常曲率曲面的第一基本形式。
  4. Gauss-Bonnet公式,证明和应用。

教材及参考书:

  1. 陈维桓《微分几何初步》,北京大学出版社。
  2. Do Carmo: Differential Geometry of Curves and Surfaces. Prentice-Hall 出版社。
  3. 苏步青,胡和生等《微分几何》,高等教育出版社。
  4. 吴大任《微分几何讲义》,高等教育出版社。
  5. 虞言林,郝凤歧《微分几何讲义》,高等教育出版社。

偏微分方程

课程号:00132330
课程名称:偏微分方程
开课学期:秋季
学分:3
先修课程:数学分析、线性代数
基本目的:偏微分方程是让本科生了解三类基本方程,即调和方程,热方程,波方程。了解这三类基本方程在物理方面的来源,方程解的表示,基本星骓,及经典解的一般存在性理论,基 本先验估计。

内容提要:

一、调和方程

用对称解求方程的基本解
用Stokes公式求格林函数的存在性
平均值公式
第一遍边值解的格林表示
极值原理
强极值原理
C 0 C^0 C0模估计
能量 S o b e l e v Sobelev Sobelev模估计

二、热方程

傅立叶变换原理
用傅立叶变换法求方程的基本解
用分离变量法求格林函数的存在性
柯西问题的格林表示

三、波方程

一维波的特征线法
波的延拓法则
高维波的平均法则
分离变量
能量估计

教材及参考书:

  1. 周蜀林《偏微分方程》,北京大学出版社。
  2. 姜礼尚、陈亚浙等 《数学物理方程讲义(第一版和第二版)》,高等教育出版社.
  3. F. John, Partial Differential Equations, Fourth Edition, Springer-Verlag.
  4. L. C. Evans, Partial Differential Equations, Berkeley Math. Lecture
    Notes, Univ. of California, Berkeley.
  5. E. DiBenedetto, Partial Differential Equations, Birkhauser, Boston-Basel-Berlin.

泛函分析

课程号:00132350
课程名称:泛函分析
开课学期:春季
学分:3
先修课程:数学分析、线性代数、复变函数、实变函数
基本目的:泛函分析是无穷维(线性)空间上的分析理论。它的主要内容是围绕无穷维线性空间及其上面的线性算子与线性泛函展开。泛函分析中许多概念和方法来源于经典分析。它撇开 了具体经典分析问题的繁杂表面,抽象出问题的本质并在很一般的框架下进行分析讨论。 这是一门内容丰富,结论深刻,并有广泛应用的重要基础课程。

内容提要:

一、空间理论

距离空间,线性赋范空间,内积空间,Banach空间与Hilbert空间,正交分解,紧与列紧,凸集与不动点。

二、线性算子与线性泛函

线性算子与线性泛函的概念,Riesz表示定理及其应用,纲性定理,Hahn-Banach定理,开映象定理,Banach逆算子定理, 共鸣定理及其应用,闭图象定理,共轭空间,共轭算子,强收敛和弱收敛,酉算子,对称算子,线性算子的谱,谱半径。

二、紧算子与Fredholm算子

紧算子的基本性质,Fredholm算子的基本性质,紧算子的谱理论,
Fredholm择一定律,Hilbert-Schmidt定理。

教材及参考书:

  1. 张恭庆,林源渠《泛函分析讲义(上册)》,北京大学出版社。
  2. K.Yosida: Functional Analysis, Springer-Verlag.
  3. W. Rudin: Functional Analysis, McGraw-Hill.
  4. A.E.Tay, D.C.Lay: Introduction to Functional Analysis, John Wiley& Sons.
  5. H.G.Heuser: Functional Analysis, John Wiley & Sons.
  6. F. Riesz, B.Sz-Nagy: Functional Analysis, Dover Publications.

拓扑学

课程号:00130161
课程名称:拓扑学
开课学期:秋季
学分:3
先修课程:数学分析,后半学期需要用到群的基本知识(抽象代数入门课程中会学到)。

基本目的:

  1. 学习掌握一般拓扑学基本知识,掌握在现代数学中广泛使用的拓扑语言。
  2. 学习掌握几何拓扑及代数拓扑入门知识,用不变性、不变量讨论空间的拓扑分类。
  3. 培养拓展几何、拓扑的直观,训练抽象思维及逻辑推理能力,提高综合数学素养。

内容提要:

一、拓扑空间与连续性
  1. 拓扑空间及其中的常用概念,度量拓扑,子空间拓扑。
  2. 连续映射的定义、判定及常用构造方法,同胚映射。
  3. 乘积空间。
  4. 商空间,莫比乌斯带、射影平面等典型空间的定义及制作。
二、几个重要的拓扑性质
  1. 分离性(特别是豪斯道夫性质)和可数性。
  2. 度量化,Tietze扩张定理、及Urysohn度量化定理的结论。
  3. 紧致性,紧致空间的性质。乘积空间与紧致性,商空间与紧致性。
  4. 列紧性,度量空间中紧致等价于列紧。
  5. 连通性,连通空间的性质,连通分支。
  6. 道路连通性,道路分支。
  7. 用拓扑性质判断空间的不同胚。
三、曲面
  1. 闭曲面,紧致曲面。可定向及不可定向曲面。
  2. 曲面的连通和。曲面的欧拉示性数。
  3. 闭曲面及紧致带边曲面的分类定理结论,曲面类型的判别。
四、同伦与基本群
  1. 映射的同伦,道路的定端同伦,道路类。
  2. 基本群,连续映射诱导的基本群同态,基点对基本群的影响。
  3. 圆周的基本群。
  4. 空间的同伦等价,形变收缩,可缩空间,基本群的同伦不变性。
  5. 有限表出群简介。
  6. van Kampen 定理的结论,圆束、闭曲面及 n 维球面基本群的计算。
  7. 基本群应用的几个经典例子(代数基本定理的证明等)。
五、复叠空间
  1. 复叠映射,复叠空间,提升唯一性定理,复叠空间的基本群。
  2. 同伦提升定理,映射提升定理。
  3. 复叠变换,正则复叠空间,万有复叠空间。

教材及参考书:

  1. 尤承业,《基础拓扑学讲义》,北京大学出版社。
  2. M. A. Armstrong 著,孙以丰译《基础拓扑学》,北京大学出版社。
  3. J. R. Munkres 著,罗嵩龄等译《拓扑学基本教程》,科学出版社。

微分流形

课程号:00130190
课程名称:微分流形
开课学期:春季
学分:3
先修课程:数学分析,高等代数,拓扑学

基本目的: 学习微分流形的大量例子和几个基本理论。

内容提要:

  • 本课程的第一部分包含大量来自古典数学的微分流形例子, 如球面, 射影空间, 代数流形, 李群, 齐次空间, Riemann流形, 复流形, 主丛, 纤维丛等。 第二部分包含微分流形上基本理论,切空间、余切空间, 向量场, 微分形式, DeRham理论介绍,Frobenius定理,叶状结构介绍等。

教材与参考书:

  1. 陈省身、陈维植:《微分几何讲义》,北京大学出版社。
  2. 白正国等:《黎曼几何初步》(第一章、第二章)。

群与表示

课程号:00136870
课程名称:群与表示
开课学期:春季
学分:3
先修课程:数学分析、高等代数、解析几何
基本目的:群与表示的理论与思想广泛地应用于数学及物理等自然科学的许多领域,在数学研究及教育中的重要性是显而易见的。群论与表示也是数学中古老而极具活力的一个领域。其本身的理论不断的发展更新,并且不断引发新的研究领域。本课程主要内容是介绍群论及表示论中所必知基本概念基本理论及思想。同时,通过一般线性群理论,介绍群论与其它数学分支的联系。本课程尽量减少必备的先修课程内容。

内容提要:

一、基本群论

回顾群论的基本概念并且发展后面章节将要用到的一些工具。有些定理的证明会略过。这一章将会介绍自同构群和半直积的概念并且介绍群作用及一些应用。

二、一般线性群

本部分主要集中介绍域上的一般线性群,这是一类极为重要的群。这一部分的内容相对独 立。目的是介绍群论是怎样出现在现代数学中的。将会定义 Borel 子群,Weyl 子群,抛物子群等概念并且给出 Bruhat 分解。最后会集中介绍 SL(n,F)及 PSL(n,F)并证明除了 n=2,|F| 不超过3时,PSL(n,F)是单群。

三、局部结构

许多数学领域中的问题研究得益于对某一个素数的局部化。在这一部分,将介绍群论对于 某一个素数的局部理论。局部结构是研究群论的有力工具。群论中的关于 p 的局部结构主要是 指 p 子群及其正规化子

四、正规结构

本章的主要内容是研究群的正规群列、合成列以及导出群列、中心群列。进而研究群的可 解性质。这些对象的研究是群论中基本的内容。

五、半单结构

本章的内容目的是为下面的群表示提供必要的代数背景,其中包括模的概念及半单代数 的分类。

六、群表示

本章主要介绍群表示论,其中包括指标的正交性,诱导表示及其指标的计算。最后给出指标理论在群论中的一个应用。

教材及参考书:

  1. 王杰《典型群引论》
  2. J.L.Alperin and R.B.Bell,Groups and Representations
  3. S.Axler, F.W.Gehring and R.A.Ribet,The Symmetric group
  4. James E.Humphreys Reflection,groups and Coxeter groups
  5. D.J.Robinson A course in the theory of groups

数论基础

课程号:00136880
课程名称:数论基础
开课学期:秋季
学分:3
先修课程:数学分析、高等代数、抽象代数
基本目的:介绍数论中的若干中心问题和基本思考方法。增加对于抽象代数 中某些概念的感性认识。了解数论与其他分支的内在联系。

内容提要:

一、整数环

整除关系与素数的基本性质,整数环中的因子分解唯一性,素数的无限性以及 素数定理的简单介绍,同余的概念和性质以及剩余类环的构造,孙子定理及其推 广,Fermat小定理及其推广,一次同余方程的解法,二次剩余的概念和基本性质, Legendre符号,二次同余方程的解法,模为素数的高次同余方程的若干基本性质, 原根和指标的概念及其简单应用。

二、代数整数环

代数整数的概念和历史起源简介,欧氏环的定义和例子,因子分解唯一性不成 立的代数整数环的例子,Fermat方程和理想概念的引入,理想的一些基本运算规则, 理想的范数和素理想的概念,理想分解的唯一性定理的简单介绍(不必给出完整的证明),理想类群的基本概念及其与因子分解性质的联系,有限域的概念以及有限 域上的多项式环的简单讨论。

三、二次数域

二次数域的整数环的构成,二次数域中的素理想的确定,二次数域中的单位群 和 Pell 方程的解法,二次数域中的理想与整系数二元二次型之间的对应关系,借助 二元二次型来描述二次域的理想类群并计算它的类数,二次互反律的陈述与证明, 利用二次互反律来描述素数在二次数域中的分解,三次与四次互反律的简单介绍。

四、分圆域

分圆域的基本概念,分圆域的次数与分圆多项式,分圆域在有理数域上的Galois群,Dirichlet特征标的概念与特征标群,Gauss和的基本性质以及高斯求解17次单位 根的方法,分圆域中的二次数域的确定,分圆域中的代数整数环,素数在分圆域的 代数整数环中的分解,Kummer对于费马大定理特殊情形的证明方法。

五、代数数与超越数

超越数的存在性,e 和 pi 是超越数的证明,用有理数逼近代数数的 Liouville 定理 和 Roth 定理的简单介绍。

六、p进数域

p 进绝对值和完备化的概念,p 进数域的基本性质,p 进数域上的函数,p 进数域的扩张等。

教材及参考书: 华罗庚《数论导引》,科学出版社。


基础代数几何

课程号:00136890
课程名称:基础代数几何
开课学期:春季
学分:3
先修课程:
基本目的:了解代数几何中的若干经典问题与基本语言,增加对于代数几何研究对象的感性认识,看到代数概念在几何上的用处。

内容提要:

一、基本概念

仿射空间中的代数子集,代数集的仿射坐标环,仿射坐标环的一些代数性质, 有理函数的概念,多项式映射与环同态之间的关系,有理映射的概念,射影空间和齐次坐标的概念,射影空间中的线性子空间及其交会关系,古典射影几何中的对偶原理,射影空间中的代数子集,射影代数子集之间的映射,超曲面上的正则点和奇 异点,超曲面在正则点处的流形结构。

二、有理曲线与有理曲面

有理函数域与有理性的概念,双有理等价的基本性质,一维函数域的 Luroth定理,二次曲线以及二次超曲面的有理性,某些三次曲线的非有理性的代数证明,三次曲面上的27条直线的存在性,三次曲面是有理曲面的证明,有奇异点的三次曲线和三次曲面的有理性,某些高次曲线的有理性,某些高次超曲面的单向有理性。

三、Hilbert零点定理

Hilbert 零点定理的各种形式,多项式环中的理想与仿射空间中的代数子集之间 的对应关系,不可约代数子集与素理想,Hilbert零点定理的证明,Hilbert 零点定理 的各种应用,射影空间中的代数子集与齐次理想之间的对应关系,古典消元理论 中的基本定理,任意交换环的谱空间,Zariski拓扑的基本概念,维数的代数定义和 基本性质,环的局部化概念,一维正则局部环与曲线的正则点。

四、平面代数曲线

切线与拐点的定义和求法,三次曲线上的加法群结构,平面代数曲线的对偶 曲线的概念和例子,结点和尖点的概念,奇异点处局部环的代数性质,曲线的相 交数问题,Bezout定理的陈述与证明,平面曲线的亏格概念,亏格的双有理不变 性,平面曲线的亏格公式,代数曲线理论与Riemann曲面理论之间的关系,三次曲 线与椭圆函数以及椭圆积分之间的关系。

五、各种例子

直纹面的例子,外代数的概念与 Grassmann 流形,Plucker 嵌入与 Plucker 二次关系 式,仿射代数群的基本概念。

六、线性系的语言

线性系的古典概念和例子,由线性系来定义有理映射的方法,线性系与线丛概念的密切联 系。

教材及参考书:

  1. Joe Harris, Algebraic Geometry, A First Course, Springer-Verlag, GTM 133.
  2. I.R.Shafarevich,BasicAlgebraicGeometryI, II,Springer-Verlag,Berlin Heidelberg , 1977.
  3. R. Hartshorne, Algebraic Geometry, Springer-Verlag, GTM 52.

数理统计

课程号:00135460
课程名称:数理统计(Mathematical Statistics)
开课学期:秋季
开课学期:秋季
学分:3
先修课程:数学分析、高等代数、概率论
基本目的:主要是通过教学,使学生掌握基本学科的基本概念和基本统计思想,具备使用常用的统计方法并结合利用先修课程中的数学、概率论知识来解决一些实际问题的能力,初步了解数理统计研究的新进展并初步建立统计思维方式。

内容提要:

一、绪论
  1. 数理统计学简介,数理统计的基本概念与研究对象。
二、估计理论
  1. 参数估计的方法:最大似然估计,矩估计,估计的相合性。
  2. 估计的优良性标准:一致最小方差无偏估计,充分统计量,C-R不等式。
  3. 置信区间:正态分布情形下的几个典型问题,T分布,卡方分布,枢轴量方法。
  4. 分布函数与密度函数的估计:经验分布函数,直方图,核估计。
三、假设检验
  1. 问题的提法与基本概念:功效函数,两类错误,无偏检验,UMP,UMPU。
  2. N-P引理及似然比检验法。
  3. 单参数情形(指数族)的几个典型假设检验问题。
  4. 广义似然比检验法。
  5. 拟合优度检验。
四、线性模型与回归分析
  1. 引言,最小二乘法,一元线性回归。
  2. 线性模型的参数估计。
  3. 线性模型的假设检验。
  4. 多元回归分析,自变量的选择。
五、试验设计与方差分析
  1. 全面试验的方差分析:单因素与多因素试验设计与方差分析。
  2. 可加模型与正交设计。
六、序贯分析简介,序贯概率比检验法
七、统计决策与贝叶斯统计简介

教材与参考书:

  1. 陈家鼎等著:数理统计学讲义,高等教育出版社,2006(第2版).
  2. D.Freedman等著,魏宗舒等译:统计学,中国统计出版社,1997.
  3. 陈希孺著:数理统计引论,科学出版社,1981.
  4. E. Lehmann: Theory of point estimation, John Wiley & Sons, 1983.
  5. E. Lehmann: Testing statistical hypothesis, John Wiley & Sons, 1986.

应用随机过程 (Applied Stochastic Processes)

课程号:00133090
课程名称:应用随机过程
开课学期:秋季
学分:3
先修课程:数学分析、高等代数、概率论
基本目的:

  1. 对多个相互关联的随机事件有充分的认识和比较准确的理解,为学习“随机过程论” 等理论课程提供丰富的实例。
  2. 能够运用所学知识来刻画、处理科学实践、经济管理和社会活动等领域的实际问题。

内容提要:

一、离散时间马氏链

定义,转移阵,状态的分类 常返与非常返
停时,强马氏性,强大数律,收敛速度
不变分布和可逆分布,随机游动
首中时首中分布,反射原理
Wald引理,格林函数,分支过程

二、泊松过程

定义及其性质,与指数分布的关系
非时齐泊松过程
复合泊松过程

三、连续时间参数马氏过程

转移速率,向前方程和向后方程
嵌入链与骨架过程,极限分布,可逆性
生灭过程,排队系统

教材及参考书:

  1. 钱敏平龚光鲁,应用随机过程,北京大学出版社 1998
  2. S.M. Ross, Stochastic Processes, John Wiley & Sons, 1983,有中译本, S.M.劳斯著,何声武等译,随机过程,中国统计出版社,1997
  3. R. Norris, Markov Chains, Cambridge University Press, 1997
  4. R.Durrett, Essentials of Stochastic Processes, Springer, 1999
  5. R.N. Bhattacharya & E.C. Waymire, Stochastic Processes with
    Applications.John Wiley & Sons, New York,1990
  6. 林元烈,《应用随机过程》,清华大学出版社, 2002
  7. 何书元,《随机过程》,北京大学出版社, 2008
  8. 陈大岳,章复熹,《应用随机过程讲义》(北京大学内部教材)

随机过程引论

课程号:00136750
课程名称:随机过程引论
开课学期:秋季
学分:3
先修课程:概率论
基本目的: 给学习优秀的同学提供比《应用随机过程》更加丰富深入的系统理论,希望达到小班教学的效果。

内容提要:

  • 随机游动和马氏链
  • 泊松过程和跳过程
  • 布朗运动与随机分析初步

教材与参考书: 钱敏平,龚光鲁,陈大岳,章复熹,《应用随机过程》,高等教育出版社,2011。


金融数学引论

课程号:00132830
课程名称:金融数学引论
开课学期:秋季
学分:3
先修课程:
基本目的:本课程主要学习如何通过数学模型来刻画在许多金融领域中都会遇到的有关货币 的时间价值的计算以及与利息有关的金融产品的计算,由此掌握金融数学中有关确定性现金 流的金融定量分析方法。

内容提要: 在学习有关利息的度量、计算及分析等基本理论和方法之后,我们将对包括年金、 投资收益、还贷、债券等一系列直接涉及利息计算的模型进行分析研究,并将对实际金融活动中所遇 到的诸多相关问题进行讨论。

一、基本理论

总量函数,累积函数,现值,终值,利息,实利率,名利率,累积因子,利息力,单 利,复利,贴现函数,实贴现率,名贴现率,贴现因子,贴现力,单贴现,复贴现,价值方程

二、年金

期末年金,期初年金,递延年金,永久年金,连续年金,广义年金

三、收益率

投资收益分析,内部收益率,再投资收益率,收益率法,净现值法,资本加权法,时间加权法,投资额法,投资年法,资本预算

四、本金利息分离技术

分期偿还,未结贷款余额,预期法,追溯法,摊还表,偿债基金,广义摊还

五、固定收益证券

债券,债券价值评估,溢价,折价,平价,市场价格,帐面价值,债券收益率,广义债 券,早赎债券,系列债券

六、利率分析

利率风险分析,利率风险,利率期限结构,即期利率,远期利率,收益率曲线,期度,凸性,资产负债分析,免疫技术

七、实际应用

抵押贷款,诚实贷款原则,融资费用,年百分率,APR 分析,固定资产折旧,资本化成本,卖空

教材及参考书:

  1. 吴岚,黄海: 金融数学引论(第一版),北京大学出版社。
  2. S.G.Kellison, The Theory of Interest(2ndedition), Irwin Burr Ridge

寿险精算

课程号:0135810
课程名称:寿险精算
开课学期:春季
学分:3
先修课程:初等概率论、利息理论
基本目的:培养学生利用数学来研究人寿保险中的随机事件的能力。通过教学,要求学生掌握 基本的随机给付模型以及相互之间的关系,掌握各种给付的精算现值以及各种险种的净保费、 净准备金的计算方法,并能编制Excel程序来计算净保费及净准备金.

内容提要:

一、单生命生存模型

生存分布,死亡力,生命表的结构,分数年龄段的生存分布的假设,利用 EXCEL 进行精算 实例分析

二、多生命生存模型

联合生存状态与最后生存者状态,生存分布及死亡力,Frank 耦合与共同扰动模型,精算 实例分析

三、多元衰减模型

多元衰减模型的定义,衰减力与衰减因素,多元衰减模型与相关的单衰减模型之间的关系, 精算实例分析。

四、 死亡保险的精算现值

精算现值,死亡保险、生死保险的给付模型及精算现值,利用 EXCEL 计算各类给付的精算 现值的方法。

五、生存保险的精算现值

生存年金,连续生存年金、期初生存年金以及期末生存年金的给付模型及对应的精算现值, 精算现值的计算方法。

六、多生命模型的精算现值

联合生存状态和最后生存者状态的精算现值

七、净保费与费用负荷保费

平衡准则,净保费的确定,各种险种的净保费,费用负荷保费,利用 EXCEL 来计算各种险 种的净保费

八、完全离散险种的净准备金

一般的完全离散险种的未来损失量模型,考虑每个保单年度资金变化的模型,净准备金的 定义,净准备金的递推公式

九、普通完全离散险种的净准备金

完全离散的生死合险及终身寿险的净准备金,净准备金的计算方法及现金流分析

十、完全连续险种及其它险种的净准备金

完全连续险种、半连续险种、每年缴纳数次保费的险种及年金的净准备金

教材及参考书:

  1. 杨静平(2002): 寿险精算基础,北京大学出版社

证券投资学

课程号:00131280
课程名称:证券投资学
开课学期:春季
学分:3
先修课程:金融数学引论,数理统计
基本目的:本课程主要学习如何通过数学模型来刻画在证券投资领域中所遇到的有关组合选 择以及与投资有关的风险计量、业绩评估等问题,由此初步掌握金融数学中有关不确定性现金 流的金融定量分析方法。

内容提要:

  • 在学习有关证券投资的基本知识后,我们将对包括资产组合理论、资本资产定价模型、套 利定价模型、多期投资模型等一系列投资中所涉及的定量化模型进行分析研究,并将对实际金融活动 中所遇到的诸多相关问题进行讨论。
一、基本知识

证券,证券市场,证券交易,股票市场指数

二、证券分析

资本估价,股利贴现模型,技术分析,行为心理分析

三、资产组合理论

投资风险,风险厌恶,无差异曲线,均值—方差分析,风险资产和无风险资产之间的资本 配置,最优风险资产组合

四、资本市场均衡理论

资本资产定价模型,单指数模型,多因素模型,套利定价理论

五、多期投资问题

效用理论,多期最优组合,时间分散

六、应用投资问题

投资基金业绩评估,证券收益的经验根据与市场有效性,固定收益证券,组合管理与资产配置

教材及参考书:

  1. 滋维·博迪等著,朱宝宪等译: 投资学(第六版),机械工业出版社。
  2. 戴维·卢恩伯格著,沈丽萍等译: 投资科学(第一版),人民大学出版社。

衍生证券基础

课程号:00136730
课程名称:证券投资学
开课学期:春季
学分:3
先修课程:初等概率论、数理统计、微积分、线性代数
基本目的:掌握以衍生证券为核心的金融基本理论、基本推理方法和基本思维方式。初步掌握 衍生证券定价问题数学建模的基本技巧。

内容提要:

一、衍生证券概述
  1. 金融衍生证券的基本产品及其市场
  2. 金融衍生证券的应用介绍
  3. 无套利理论介绍
二、远期合约与期货合约
  1. 期货市场的机制
  2. 期货的对冲策略
  3. 利率及利率期货
  4. 远期合约与期货合约的定价
三、互换合约
  1. 互换合约的机制
  2. 利率互换
  3. 货币互换
四、期权合约的一般理论
  1. 期权合约的市场机制及股票期权的性质
  2. 期权合约的交易策略
五、期权定价一般理论初步
  1. 二叉树模型
  2. Winner 过程与 Ito 公式
  3. 条件期望与鞅的简单介绍
  4. Black-Scholes-Merton 模型
  5. 某些特殊的期权
  6. 希腊字母和波动率微笑
  7. 数值方法基础
六、其它衍生产品简介

教材及参考书:

  1. Hull, J., Options, Futures and Other Derivatives.
  2. Wilmott, P., Dewynne, J., and Howison, S. (1994),Option Pricing:
    Mathematical Models and Computation, Oxford Financial Press, Oxford.
  3. Shreve, S.E. (2004), Stochastic Calculus for FinanceI, The Binomial Asset Pricing Model, Springer.

金融经济学

课程号:00134330
课程名称:金融经济学
开课学期:秋季
学分:3
先修课程:概率论
基本目的:为应用数学专业的本科生开设的金融经济学基础课程,讲授金融经济学的基本内容, 帮助金融数学的本科生建立运用经济学的一般原理来分析金融问题并建立相应的数学模型的 方法,引导学生了解和思考进入基本问题的来源和主要的处理手段。

内容提要:

  • 第一部分 金融经济学的基本概念和主要的研究问题
  • 第二部分 单期模型
    • 无套利定价基本理论
    • 不确定环境的投资决策理论
    • 组合选择问题
    • 金融资产的均衡定价理论
    • 资本资产定价模型
  • 第三部分 多期模型简介
  • 第四部分 专题介绍

教材及参考书:

  1. 王江:金融经济学,中国人民大学出版社。
  2. Huang,C,F., Litzenberger,R.,Foundations for Financial Economics, NorthHolland,New York.
  3. 史树中《金融经济学十讲》,人民出版社。

金融数据分析导论

课程号:00136760
课程名称:金融数据分析导论
开课学期:秋季
学分:3
先修课程:程序设计课程,数学分析,高等代数,概率论
基本目的:通过课程学习,学生能了解金融港数据的基本特征,掌握一些金融数据分析中常用 的模型该方法,以及分析金融数据的基本技能,并且通过实验和练习,获得进行实际金融数据 分析的经验。

内容提要:

  1. 金融数据的收集、处理、汇总及可视化方法。介绍数据类型,数据的读取 和转换,网络数据的抓取,数据的预处理以及金融可视化工具。风险收益证券收益率的计算,常见的分布,收益率的特征,随机游走模型,指数及技术 指标计算,技术分析交易规则的检验。
  2. 金融时间序列的线性模型,包括如下概念, 平稳性,相关系数和自相关 函数,白噪声和线性时间序列, 简单自回归模型,简单移动平均模型,简单 ARMA 模型,单位 根非平稳性, 指数平滑, 季节模型,带时间序列误差的回归模型,长记忆模型。
  3. 经典投资组合模型。
  4. 统计套利方法和实践。
  5. 高频数据分析和建模。
  6. 一些机器学习方法:logistic回归,决策树,贝叶斯网络等及其在金融中的应用。

教材及参考书: [美]蔡瑞胸《金融数学分析导论:基于R语言利用python进行数据分析》,机械工业出版社,2014。


金融时间序列分析

课程号:00131100
课程名称:金融时间序列分析
开课学期:秋季
学分:3
先修课程:微积分,线性代数,概率论,数理统计,最好学过实变函数和泛函分析,不做必要 要求。
基本目的:较系统学习和掌握线性时间序列分析的基本理论和方法,能够用时间序列分析的线性模型对时间序列数据进行建模和预测。 简单介绍谱分析,金融数据特点和常用模型方法。

内容提要:

一、时间序列的基本理论

时间序列的分解, 平稳序列的定义, 线性平稳序列和线性滤波介绍, 正态时间序列和随机变量的收敛性,严平稳序列及其遍历性介绍,Hilbert 空间中的平稳序列介 绍, 平稳序列的谱函数介绍。

二、时间序列的常用模型

推移算子和常系数差分方程,自回归模型及其平稳性, AR§序列的谱密 度和 Yule-Walker 方程, 平稳序列的偏相关系数和 Levinson 递推公式, AR§序列举例, 滑动平均模型,自回归滑动平均模型的基本理论。ARIMA 模型介绍。

三、参数估计的一般方法

时间序列均值的估计, 时间序列自协方差函数的估计, 白噪声检验方法。

四、时间序列的预报和ARMA模型的参数估计

最佳线性预测的基本性质, 非决定性平稳序列及其 Wold 表示, 时间序列的递推预测, ARMA(p,q)序列的递推预测, AR§模型的参数估计方法, MA(q)模型的参 数估计方法, ARMA(p,q)模型的参数估计方法,求和ARIMA(p,d,q)模型及季节ARMA模 型的参数估计方法介绍, 潜周期模型及其参数估计介绍。

五、时间序列的谱分析简介

平稳序列的谱表示, 平稳序列的周期图, 加窗谱估计。

教材及参考书:

  1. 何书元,《应用时间序列分析》,北京大学出版社,2003。
  2. Rui S.Tsay,《金融时间序列分析》,人民邮电出版社,2012。

测度论

课程号:00133010
课程名称:测度论(Measure Theory)
开课学期:春季
学分:(2021年版手册未备注)
先修课程:概率论,实变函数或实变与泛函
基本目的:本课程讲述抽象空间的测度与积分,是现代数学的重要理论基础,为学生进一步学习建立 在严格公理化体系下的概率论提供必要的数学基础,同时使学生了解抽象概念和定理的 直观意义,并对学生进行适当的思维训练。

内容提要:

一、可测空间

集合运算,各种集合类,可测空间,单调类定理,距离可测空间

二、测度空间

测度的定义和性质,外测度及其可测集,Caratheodory 定理,用代数中的集合逼近σ代数,测度的完备化,Lebesgue-Stieltjes 测度

三、可测映射和可测函数

可测映射,可测函数,典型方法,函数形式的λ-π定理,可测函数的各种收敛, Skorokhod 定理

四、可测函数的积分

积分的定义及性质,积分号下取极限(单调收敛定理),Fatou引理,控制收敛定理,Lp 空间,概率空间的积分

五、符号测度

定义,Hahn 分解,Jordan 分解,Radon-Nikodym 导数,Lebesgue 分解,条件期望,正则条件概率

六、乘积空间上的测度和积分

有限维乘积空间,概率转移函数,有限维乘积空间上的测度,可测函数与积分,可列维乘 积空间上的测度,Kolmogorov相容性定理

教材及参考书:

  1. 程士宏,《测度论与概率论基础》,北京大学出版社,2004.
  2. 严加安,《测度论讲义》(第二版),科学出版社,2004.
  3. P. R. Halmos: Measure Theory, Springer-Verlag, 1974.

应用回归分析

课程号: 00133110
课程名称:应用回归分析
开课学期:春季
学分:3
先修课程:微积分、高等代数、概率统计基础
基本目的:

  1. 使学生掌握回归分析的理论与方法;
  2. 使学生掌握应用统计的一些基本理论与技巧,并能用计算机解决实际问题。

内容提要:

一、一元线性回归
  • 模型
  • 参数的最小二乘估计
  • 回归方程的显著性检验
  • 回归系数的区间估计
  • 预测和控制
  • 拟合检验可以化为一元线性回归的曲线回归问题
二、多无线性回归
  • 多元线性回归的数学模型
  • 参数的最小二乘估计
  • 回归方程的显著性检验
  • 回归系数的显著性检验
  • 回归系数的置信区间与联合置信区间
  • 预测
  • 观测值方差不等或相关的情况
三、回归诊断
  • 残差及其简单性质
  • 回归函数线性的诊断
  • 误差方差齐性的诊断
  • 误差的独立性诊断
  • 模型误差的正态性诊断
四、多项式回归
  • 多项式回归
  • 正交多项式及其应用
  • 多元正交多项式回归
五、自变量的选择
  • 自变量选择的后果
  • 自变量选择准则
  • <求解求逆紧凑变换(扫描运算)
  • 求一切可能回归方程的方法
  • 逐步回归
六、含有定性变量的情况
  • 最小二乘法基本定理
  • 数量化方法
  • 协方差分析
七、最小二乘估计的改进
  • 岭估计
  • 主成分估计
八、稳健回归
  • 异常值
  • M 估计
  • R 估计
九、线性模型的推广
  • 非线性回归
  • 逻辑斯谛回归
  • 广义线性模型

教材及参考书:

  1. S. Weisberg 著, 王静龙等译, 《应用线性回归》(第二版), 中国统计出版社
  2. 周纪芗,《回归分析》, 华东师范大学出版社, 1993
  3. Kutner, Nachtsheim and Neter, Applied Linear Regression Models, McGraw Hill,《应用线性回归模型》高等教育出版社,2005
  4. 陈希孺等,《近代应用回归分析》,安徽教育出版社

应用多元统计分析

课程号: 00133050
课程名称:应用多元统计分析
开课学期:秋季
学分:3
先修课程:数理统计,概率论
基本目的:多元分析是一门与实际联系比较密切的课程,通过本门课程的学习了解多元统计分 析的基本内容,为统计的应用打好理论基础。

内容提要:多元统计分析的应用,多元统计数据的图表示法

一、多元正态分布及参数的估计
  • 随机向量
  • 多元正态分布的定义与基本性质
  • 条件分布和独立性
  • 随机阵的正态分布
  • 多元正态分布的参数估计
二、多元正态总体参数的假设检验
  • 几个重要统计量的分布
  • 单总体均值向量的检验及置信域
  • 多总体均值向量的检验
  • 协方差阵的检验
  • 独立性检验
  • 正态性检验
三、判别分析
  • 距离判别
  • 贝叶斯判别法及广义平方距离判别法
  • 费希尔判别
  • 判别效果的检验及各种判别能力的检验
  • 逐步判别
四、聚类分析
  • 聚类分析的方法
  • 距离与相似系数
  • 系统聚类法
  • 动态聚类法
  • 有序样品聚类法
五、主成分分析
  • 总体主成分
  • 样本主成分
  • 主成分分析的应用
六、因子分析
  • 因子模型
  • 参数估计方法
  • 方差最大的正交旋转
七、对应分析方法
  • 什么是对应分析方法
  • 对应分析方法的原理及应用
八、典型相关分析
  • 总体典型相关
  • 样本典型相关
  • 典型冗余分析
九、偏最小二乘回归分析
  • 偏最小二乘回归分析方法
  • 应用例子

教材及参考书:

  1. 高惠璇:《多元统计分析》,北京大学出版社
  2. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall

应用随机分析

课程号: 00137110
课程名称:应用随机分析
开课学期:春季(单数年)
学分:3
先修课程:概率论、应用随机过程、实变函数或实变与泛函
基本目的:对条件期望,鞅,随机积分和随机微分方程有初步的了解。能够运用所学知识来刻 画、处理科学实践、经济管理和社会活动等领域的实际问题。

教学计划:

一、引言与预备知识
  1. 概率论公理体系
  2. 方差有限的随机变量空间和Gauss系
二、条件期望
  1. 引言和条件数学期望的直观推导
  2. 条件数学期望的定义和性质I
  3. 条件数学期望的定义和性质II
三、鞅论初步
  1. 鞅的定义和例子
  2. Dood下鞅列分解定理
  3. 选样定理和Doob停时定理
四、Brown运动
五、随机积分和Ito公式
  1. 引言
  2. 实值函数的Stieltjes积分
  3. 对Brown运动的Ito积分
  4. Ito 公式
  5. 多维Ito积分和Ito公式
六、随机微分方程和扩散过程
  1. 随机微分方程的例子
  2. 扩散过程和解的Markov性
  3. Fokker-Planck方程

教材:

  • 《随机微分方程及其应用概要》龚光鲁编著,清华大学出版社,2008年。

教学参考书:

  1. Oksendal B. Stochastic Differential Equations: An introduction with application. 6thed Springer 2003
  2. Klebaner F.C. Introduction to Stochastic Calculus with Applications. 2nd ed. Imperial College Press(2004) (人民邮电出版社 2008 影印)

统计计算

课程号:00133030
课程名称:统计计算
开课学期:春季
先修课程:数学分析,线性代数,概率论和数理统计
基本目的:通过本课程的学习使学生掌握统计计算的基本知识,了解各种随机数的产生和检验, 数值计算方法,能利用随机数进行统计模拟和系统仿真,掌握 EM 算法和 MCMC 算法等现代统 计方法。

内容提要:

一、准备知识

泰勒展开、似然推断、Bayesian 推断、极限定理、马氏链、数据插值、牛顿迭代法

二、矩阵计算

三角分解、奇异值分解、特征值计算

三、随机数的产生与检验

均匀分布随机数的产生与检验,指数分布随机数的产生,正态分布随机数的产生,Weibull 分布随机数产生,一般分布随机数的产生,非齐次泊松过程随机轨道产生

四、 数值积分与蒙特卡洛积分

数值积分方法,拒绝/接受抽样法,重要性抽样法,抽样重要性再抽样法、序贯重要性法、方差减低技术

五、 随机模拟与系统仿真

工业过程仿真、服务系统仿真、点估计的模拟评估,假设检验的模拟评估,置信区间的模拟评估

六、 现代统计方法介绍

EM 算法、随机搜寻,遗传算法,Bootstrap, MCMC

教学参考书:

  1. G.H. Givens, J.A. Hoeting, Computational Statistics, John Wiley & Sons, Inc, Hoboken, New Jersey, 2005
  2. 高惠璇,统计计算,北京大学出版社,1995
  3. James E. Gentle, Wolfgang Hardle, Yuichi Mori, Handbook of computational statistics : concepts and methods, Berlin; London: Springer, 2004
  4. 徐树方,矩阵计算的理论与方法(北京大学数学丛书), 北京大学出版社,1995

抽样调查

课程号:00133020
课程名称:抽样调查
开课学期:春季
先修课程:数学分析、概率论、数理统计
基本目的:本课程为数理统计的一个重要分支。它是关于如何有效地抽取样本收集数据并对总 体的各种指标进行统计推断和分析的学科。它在自然科学和社会科学中有广泛的应用。对于统 计学专业的学生来说,这是一门训练统计方法的重要课程。

内容提要:

抽样调查概要

大规模抽样调查,有限总体抽样的样本分布,概率抽样的几种基本的抽样方法

简单随机抽样

简单随机抽样的几个基本定理,简单随机抽样的实现,简单估值法,置信区间与样本量的确定,比估计,差估计与回归估计

不等概抽样

PPS 抽样,不等概πPS 抽样,Rao-Hartley-Cochran 随机分群抽样

分层抽样

简单估值法,组合比估计和回归估计,样本量的分配,与简单随机抽样的比较,如 何适当分层,后分层估计和定额抽样

多阶抽样

二阶抽样问题的提法,二阶抽样的估值法,二阶抽样的效率

整群抽样与系统抽样

整群抽样,群内相关系数,系统抽样,个体指标具有特殊结构时的系统抽样,系统 抽样估计量方差的估计

二相抽样

为分层的二阶抽样,二相分层抽样的最优分配问题,为 PPS 抽样的二相抽样

抽样实践中常见的几个问题的讨论

定期连续抽样调查中使用历史数据的技术,敏感性问题的调查方法,不完善抽样框的处理

教材与参考书:

  1. 孙山泽《样调查》,北大出版社,2004。
  2. 冯士雍, 倪家勋, 邹国华《抽样调查理论与方法》,中国统计出版社,1998。

应用时间序列分析(Time Series Analysis)

课程号:00133070
课程名称:应用时间序列分析(Time Series Analysis)
开课学期:秋季
学分:3
先修课程:概率论、数理统计、泛函分析
基本目的:较系统学习和掌握线性时间序列分析的基本理论和方法,能够用时间序列分析的线性模型对时间序列数据进行建模和预测。

内容提要:

一、时间序列的基本理论

时间序列的分解, 平稳序列的定义, 线性平稳序列和线性滤波介绍, 正态时间序列和随机变量的收敛性,严平稳序列及其遍历性介绍,Hilbert 空间中的平稳序列 介绍, 平稳序列的谱函数介绍。

二、时间序列的常用模型

推移算子和常系数差分方程,自回归模型及其平稳性, AR§序列的谱密 度和 Yule-Walker 方程, 平稳序列的偏相关系数和 Levinson 递推公式, AR§序列举 例,滑动平均模型,自回归滑动平均模型的基本理论。

三、参数估计的一般方法

时间序列均值的估计, 时间序列自协方差函数的估计, 白噪声检验方法。

四、时间序列的预报和 ARMA 模型的参数估计(13 学时)

最佳线性预测的基本性质, 非决定性平稳序列及其 Wold 表示, 时间序列 的递推预测, ARMA(p,q)序列的递推预测, AR§模型的参数估计方法, MA(q)模型 的参数估计方法, ARMA(p,q)模型的参数估计方法, 求和 ARIMA(p,d,q)模型及季节 ARMA 模型的参数估计方法介绍, 潜周期模型及其参数估计介绍。

五、时间序列的谱分析简介(6 学时)

平稳序列的谱表示, 平稳序列的周期图, 加窗谱估计。

教材与参考书:

  1. 何书元《应用时间序列分析》,北京大学出版社,7-301-06347-4,2003 第一版。
  2. 安鸿志《时间序列分析》,华东师大出版社,7561707029,1992 第一版。
  3. 谢衷洁《时间序列分析》,北京大学出版社,7-301-00849-X,1990 年第一版。

非参数统计

课程号:00135220
课程名称:非参数统计
开课学期:春季
学分:3
先修课程:微积分、高等代数、概率论,数理统计
基本目的:

  1. 使学生掌握非参数分析的理论与方法
  2. 使学生掌握非参数统计的一些基本理论与技巧,并能用计算机解决实际问题。

内容提要:

一、 R简介
二、适应任意分布的统计量
  • 计数统计量;秩统计量;符号秩统计量;条件检验
三、U 统计量
  • 单样本 U 统计量;单样本 U 统计量的渐近分布;两样本 U 统计量的渐近分布
四、线性秩统计量
  • 线性秩统计量的定义;线性秩统计量分布的有限样本性质
五、功效函数
  • 备择假设与功效函数;Lehmann 提法及秩分布;局部最优秩检验;功效函数模拟计算
六、检验的渐近相对效率
  • Pitman 渐近相对效率;广义 U 统计量的极限定理;两样本位置问题线性秩统计量的渐近相对效率
七、拟合优度检验
  • Chi-square 检验;列联表检验;KS 检验;GSEA–KS 检验应用
八、多样本统计推断
  • Kruskal-Wallis 统计量;Jonckheere—Terpstra 检验;Friedman 检验;Hodges-Lehmann 检验;Page 检验
九、相关性检验
  • 秩相关系数;秩相关检验;Kendall-相关系数;Kendall 一致性检验
十、密度估计与非参数回归
  • 非参数密度估计方法;核估计;非参数回归方法;核方法;最近邻估计方法

教材和参考书:

  1. 孙山泽,《非参数统计讲义》,北京大学出版社,2000.
  2. 王静龙,梁小筠,《非参数统计分析》,高等教育出版社,2006.
  3. 吴喜之,《非参数统计(第二版)》,中国统计出版社,2006.
  4. 《实用非参数统计(第三版)》,崔恒建译,人民邮电出版社,2006。
  5. 《现代非参数统计》,吴喜之译,科学出版社,2008 年。
  6. J. J. Higgins. Introduction to modern nonparametric statistics. Thomson , 中国 统计出版社影印版,2005 年。### 统计学习

贝叶斯理论与算法

课程号:00100877
课程名称:贝叶斯理论与算法
开课学期:秋季
学分:3
先修课程:概率论,多元分析

内容提要:

Chapter 1 Introduction

1.1 Main areas in Bayesian analysis
1.2 Prior distributions, posterior distributions, conjugate priors, Jeffrey’s prior
1.3 Exponential Families, Statistics, Sufficient Statistics, Conjugate prior family
1.4 Exponential family as an approximation, Laplace approximation

Chapter 2 Statistical Inference

2.1 MLE principle
2.2. MAP estimation
2.3 Bayesian inference

Chapter 3 Model Selection

3.1 Introduction
3.2 AIC, BIC, Penalization
3.3 Bayes Factor

Chapter 4 The EM Algorithm

4.1 Basic idea
4.2 Convergence Analysis
4.3 Extensions: Variational EM, Majorization Minimization (MM) 4.4 Case studies

Chapter 5 The MCMC Sampling

5.1 Metropolis-Hastings algorithm, Gibbs sampling
5.2 Reversible Jump MCMC
5.3 Auxiliary Variable Methods, Data Augmentation Technology
5.4 Case studies

Chapter 6 Generalized Linear Models

6.1 Logistic regression
6.2 Exponential Family Models
6.3 Discriminant Models vs. Generative Models

Chapter 7 Mixture Models

7.1 Gaussian Mixtures Models
7.2 Hidden Markov Models
7.3 Mixture of Finite

Chapter 8 Latent Data Models

8.1 Factor Analysis
8.2 Conditional random fields
8.3 Latent Dirichlet Allocation

Chapter 9 State Space Models

9.1 Introduction
9.2 Kalman Filter
9.3 Particle Filter
9.4 Approximate Inference

Chapter 10 Bayesian nonparametrics

教材与参考书:

  1. Christian P. Robert. The Bayesian Choice, second edition. Springer, 2004
  2. Andrew Gelman wt al. Bayesian Data Analysis, third edition. CRC, 2014.

统计模型和计算方法

课程号:00102516
课程名称:统计模型和计算方法
开课学期:秋季
学分:3
先修课程:00113690 随机模拟方法,00133090 应用随机过程 00131300 概率论
基本目的:本课程的主要目的是向学生介绍一些现代统计学模型,以及随之发展起来的高效统 计计算方法,并通过具体的应用实例向学生展示统计计算方法在科学发现中扮演的重要角色。

内容提要:

1. 课程介绍
  • 主要介绍课程安排,主要内容,考核方式等。简单介绍一下统计学的研究对象,统计模 型和计算方法等,并对一些基本概念如似然函数,KL divergence,指数分布族,贝叶斯推断, Markov chain 等做一个简单回顾。
2.最优化算法
  • 现代统计学中常用的最优化算法,包括经典的凸优化方法,受限问题的 KKT 条件,传统 梯度下降算法,牛顿方法,拟牛顿方法,Fisher scoring,iterative reweighted least square (应用实例 Logistic regression), 以及现代高效梯度下降算法,包括带动量的梯度下降 算法,Nesterov’s Accelerated Gradient Descent Method, 求解带不可微附加项目标函数 的 Proximial Gradient Descent, 以及适用于大数据的 stochastic gradient descent method 和 adaptive stochastic gradient descent 方法。
3. 数值积分,Monte Carlo 方法
  • 经典的 Newton-Cotes 数值积分格式,正交多项式以及高斯积分格式,数值积分的蒙特 卡洛方法,Inverse CDF 抽样方法,rejection sampling, adaptive rejection sampling, 方 差减小的方法包括重要性抽样,self-normalized 重要性抽样,重要性抽样的诊断标准,自适 应重要性抽样,控制变量方法以及 Rao-Blackwellization 方法
4. 马氏连蒙特卡洛算法
  • 随机过程简介,离散时间离散状态马氏链,马氏链的平稳分布,遍历性定理,离散时间 连续状态的马氏链,基本的马氏链蒙特卡洛方法包括 Metropolis-Hasting Algorithm, 空间 分解方法,吉布斯抽样及其在 probabilistic graphical model, 如 Latent Dirichlet Allocation(LDA)中的应用,基本的马氏链诊断方法,辅助变量方法如 Parallel Tempering, slice sampling 等,以及现代高效的MCMC方法包括哈密尔顿蒙特卡洛算法(Hamiltonian Monte Carlo), Riemannian Manifold Hamiltonian Monte Carlo, 自适应蒙特卡洛算法, 适用于大数据的随机梯度蒙特卡洛算法(stochastic gradient mcmc)等。
5. EM算法
  • 经典的用于隐变量模型的 Expectation Maximization(EM) 算法,以及在混合高斯模 型和隐马氏模型中的应用。EM 算法的收敛性理论,带正则项的 EM 算法,蒙特卡洛 EM 方法, Expectation Conditional Maximization 方法,EM 梯度方法等。
6. 变分推断
  • 变分 EM 方法,平均场近似 (mean-field approximation),共轭指数模型,贝叶斯模 型选择,Evidence Lower Bound, coordinate ascent algorithm, 平均场变分推断在贝叶斯 混合高斯模型和贝叶斯 LDA 模型中的应用,适用于大数据的随机变分推断方法,基于随机优化 的一般变分推断方法,控制变量方法和重参数化方法,变分推断中的训练目标函数的设计以及 在贝叶斯神经网络中的应用,Expectation Propagation, 标准化流方法,变分推断跟 MCMC 的 结合等高级变分推断方法。
7. 深度生成模型
  • 主要介绍目前主流的深度生成模型,以及它们与传统统计模型之间的联系。涵盖的生成 模型有:自回归模型,变分自编码器和生成对抗模型。
8. 统计进化推断
  • 介绍计算生物学中的统计方法,重点介绍其中的一个重要分支:统计进化推断。大体内 容包括生物进化模型,目前主要的计算推断方法(MCMC), 以及最近提出的基于变分推断的工 作。这部分为选讲内容,可根据教师意愿和学生兴趣适当调整

教材与参考书:

  1. Gelman,A.,Carlin, J.,Stern, H.,and: Bayesian Data Analysis,Chapman & Hall.
  2. Liu, J.:Monte Carlo Strategies in Scientific Computing, Springer-Velag.
  3. Lange, K.:Numerical Analysis for Sttisticians, Springer-Velag.
  4. Hastine, T.,Tibshirani, R. and: The Elenments of Statistical Learing,Springer.
  5. Goodfellow, I.,Bengio, Y.and: Deep Learing, MIT Press.
  6. Casella, G., and Berger,R.L.Statistical Inference, Duxbury
  7. Givens, G. H.and Hoeting, J.A.Computational Statistics,Wiley-Interscience.

试验设计

课程号:00110710
课程名称:试验设计
开课学期:春季
学分:3
先修课程:概率论、数理统计、应用多元回归分析
基本目的:本课程为数理统计的一个分支。它是关于如何有效地选择有限个数的试验设置来实 施试验并对试验数据进行有效的统计分析的学科。通过本课程的学习,使学生掌握现代试验设 计的理论与方法, 增强学生利用统计方法处理实际问题的能力。

1. 试验设计基本原则与单因子试验

试验设计简介与历史回顾,计划和实施试 验的系统方法,基本原则:重复、随机化和分区组,一般的线性模型,回归分析中的变量选择, 单项分类设计,多重比较,定量因子和正交多项式,残差分析:模型假设的评估

2. 多因子试验

配对比较设计,随机化区组设计,二向分类设计,多项分类设 计,相应的变换,拉丁方设计:两个分区组变量,希腊拉丁方设计,平衡不完全区组设计,协 方差分析:联合辅助信息

3. 二水平完全因析试验

望目特征问题和二次损失函数,二水平完全因析设计, 因子效应和图示,因子效应的基本原则,利用回归和模型矩阵计算因子效应,二水平完全因析 设计中的分区组,效应显著性的正规检验方法

4. 二水平部分因析设计

部分因析设计简介,解除别名效应中模糊性的技术, 选择最优部分因析设计的准则 部分因析设计中的分区组

5. 三水平完全因析设计和部分因析试验

三水平完全因析设计和部分因析试验(4 学时) 三水平完全因析设计,三水平部分因 析设计,三水平设计的效应分析方法,三水平完全和部分因析设计的分区组

多于二水平试验的其它设计和分析技术(4 学时)替换法与二、四混合水平设计的构造, 二、四混合水平设计的 MA 准则,二、四混合水平设计的分析策略,二、三混合水平试验的设 计和分析,任意素数水平的部分因析设计,带有关联因子的设计与分析

6. 非正规设计的构造与性质

非正规设计的一些优点,关于正交表的一个引理, Plackett-Burman 设计和 Hall 设计,构造混合水平正交表的方法,通过并水平构造正交主效 应设计

7. 带有复杂别名的试验

效应的部分别名和别名矩阵,带有复杂别名设计的分 析策略,带有复杂别名设计的贝叶斯变量选择策略,超饱和设计的构造与分析

8. 稳健参数设计简介

控制因子和噪声因子,通过稳健参数设计减小变差,试 验与建模策略,乘积表与单一表,信噪比及其在参数设计优化中的局限性


应用生存分析

课程号:00132100
课程名称:应用生存分析
开课学期:秋季(两年一次)
学分:3
先修课程:概率论、数理统计
基本目的:生存分析是研究寿命数据和响应时间数据的统计学科. 该课程是生物统计学, 医 疗统计学等学科的核心课程。应用生存分析课程将重点介绍如何利用现代生存分析方法处理 寿命数据. 通过本课程的学习, 让同学们掌握生存分析的基本概念和基本统计方法, 重点掌 握如何应用常见的生物统计模型处理实际问题。

内容提要:

一、 引言
  • 典型的数据删失机制、数据实例
二、 生存数据的描述方法
  • 生存函数估计方法、估计得到的生存函数的使用、生存函数的比较、其它函数的估计
三、 生存数据的回归模型
  • 半参数回归模型、拟合比例危险率模型、估计比例危险率模型的生存函数
四、 比例危险率模型的解释
  • 名义值协变量、连续值协变量、多元协变量模型、协变量有关的生存函数的解释和应用
五、 变量选择
  • 目的性选择方法,逐步选择方法,最优子集选择法
六、 模型评价
  • 残差、比例危险率的评价方法、有重要影响的个体的识别方法、拟合优度检验、模型的解 释和表述
七、 比例危险率模型的推广
  • 分层危险率模型、随时间变化的协变量、截断、左删失和区间删失
八、 参数回归模型
  • 指数回归模型、威布尔回归模型、对数 Logistic 模型、其它回归模型
九、 其它模型
  • 缺陷模型、嵌套 Case-Control 研究、可加模型

教材与参考书:

  1. David W. Hosmer, Stanley Lemeshow, Applied survival analysis : regression modeling of time to event data, New York : Wiley, 1999.
  2. Chap T. Le., Applied survival analysis,New York : Wiley, 1997.
  3. 陈家鼎,生存分析与可靠性,北京大学出版社,2005
  4. Lawless J F. 寿命数据中的统计模型与方法. 峁诗松,濮晓龙,刘忠译. 中国统计出版社,1998

生物信息中的数学模型与方法

课程号:00136180
课程名称:生物信息中的数学模型与方法
开课学期:秋季
学分:3
先修课程:概率论与数理统计
基本目的:培养学生的研究性学习能力,开阔眼界,为将来的研究与应用打好基础。

本课程围绕八个问题展开:

  • Topic 1: 序列特征检测(Sequence feature detection): DNA 序列分析,各种 DNA 特征的 识别(Promoter, 关键位点,CpG 岛),基于隐马氏模型建模
  • Topic 2: 序列比对(Sequence alignment):两序列比对,多序列比对,
  • Topic 3: 分子进化:分子钟,进化模型,进化树构建
  • Topic 4: 模体发现(Motif finding):ChIP-Chip, ChIP-seq, 转录因子结合位点,EM 算法, MCMC,Gibbs 采样, Deep Learning
  • Topic 5: 基因表达数据分析: Microarray, RNA-seq, Alternative Splicing, Isoform 表 达量估计, 聚类分析,T-检验,Wilcoxon 检验,分类,预测, 变量选择
  • Topic 6: 基因网络推断:Pearson 相关,Spearman 相关,距离相关,相关矩阵,精度矩阵, 贝叶斯网络推断
  • Topic 7: 蛋白质相互左右网络预测及其分析: 网络预测方法,基于网络的推断,Network Module, network motif
  • Topic8: 高维数据降维方法: 主成分分析,奇异值分解(SVD),多维标度(Multi-dimensional scaling, MDS), 非负矩阵分解
第一章:生物背景和课程简介
第二章:Hidden Markov Model (HMM)及其应用

2.1 Markov Chain
2.2 HMM 理论
2.3 HMM 和基因识别 (Topic I)

第三章:序列比对中的统计模型 (Topic II)
第四章:进化树的概率模型 (Topic III )
第五章:模体发现(Motif finding)中的概率统计模型 (Topic IV)

5.1 模体发现(Motif Finding)问题
5.2 EM algorithm
5.3 Markov Chain Monte Carlo (MCMC)
5.4 深度学习方法在 Motif finding 上的应用

第六章:基因表达数据分析 (Topic V)

6.1 Microarray 和表达度量
6.2 类型比较
6.3 聚类分析
6.4 分类和预测
6.5 变量选择

第七章:基因网络推断 (Topic VI)

7.1 相关检验
7.2 Bayesian 网络
7.3 Gaussian Graphical Model

第八章:蛋白质相互作用网络分析 (Topic VII)

8.1 蛋白质相互作用网络(实验方法与预测)
8.2 基于网络的推断
8.3 网络模块 (Network Module)
8.4 网络模体 (Network Motif)

第九章:降维及其应用 (Topic VIII)

数值代数

课程号:00130550
课程名称:数值代数
开课学期:秋季
学分:3
先修课程:数学分析(或高等数学)、高等代数(或线性代数)
基本目的:数值代数是计算数学专业的一门专业基础必修课程。通过本课程的学习, 使学生掌握数值代 数的基本计算方法, 培养学生对算法进行理论分析的初步能力。

课程内容:

一、线性方程组的直接解法
  • 三角形方程组和三角分解,三角分解的计算,选主元三角分解,平方根法,分块三角分解。
二、线性方程组的敏度分析与消去法的舍入误差分析
  • 向量范数和矩阵范数,线性方程组的敏度分析,基本运算的舍入误差分析,列主元 Gauss消去法的舍入误差分析,计算解的精度估计和迭代改进。
三、最小二乘问题的解法
  • 最小二乘问题的数学理论,正交变换,正交化方法。
四、线性方程组的古典迭代解法
  • Jacobi 迭代和 Gauss-Seidel 迭代,收敛性分析,模型问题,超松弛迭代法。
五、共轭梯度法
  • 最速下降法,共轭梯度法及其基本性质,实用共轭梯度法及其收敛性,预优共轭梯度法, Krylov 子空间法。
六、非对称特征值问题的计算方法
  • 基本概念与性质,幂法,反幂法,QR 方法,求解矩阵广义特征值问题的 QZ 方法。
七、对称特征值问题的计算方法
  • 基本性质,对称 QR 方法,Jacobi 方法,二分法,分而治之法。

教材与参考书:

  1. 徐树方,高立,张平文编著,《数值线性代数》,北京大学出版社,2000。
  2. 徐树方编著,《矩阵计算的理论与方法》,北京大学出版社,1995。
  3. J.W.Demmel, Applied Numerical Linear Algebra, Philadephia, 1997。

数值分析

课程号:00130560
课程名称:数值分析
开课学期:秋季
学分:3
先修课程:数学分析、高等代数、常微分方程、初等概率论
基本目的:数值分析是计算数学专业的一门专业基础必修课程。通过本课程的学习,使学生掌 握科学与工程计算中的基本方法,培养学生的基本编程能力,以及应用计算机来解决实际问题 的能力。

一、引论
  • 绝对误差与相对误差,误差对计算的影响,稳定性。
二、函数逼近
  • Lagrange 插值,Newton 插值,分段低阶多项式插值,ENO 插值,最小二乘多项式拟合,最佳平方逼近,正交多项式。
三、数值微分与数值积分
  • 数值微分,矩形公式,梯形公式与 Simpson 公式,复合求积法与 Romberg 积分,Gauss 积分,周期函数积分的谱精度。
四、非线性方程的数值解法
  • 二分法,对方程的 Newton 法,对方程组的 Newton 法及拟 Newton 法。
五、常微分方程数值解法
  • Euler法,预估-校正法,Runge-Kutta 方法,线性多步法,辛算法。
六、快速算法
  • 离散 Fourier 级数,快速 Fourier 变换。
七、Monte Carlo 方法
  • 伪随机数发生器,减小方差技巧,Metropolis 算法。

教材与参考书:

  1. 张平文,李铁军,《数值分析》,北京大学出版社, 2007。
  2. R.L. Burden and D. Faires, Numerical analysis, 7th edition, Thomson Learning,2001。
  3. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Springer-Verlag, New York, 2000。
  4. J. Stoer and R. Bulirsch, An introduction to numerical analysis,
    Springer-Verlag, New York, 2002.
  5. N. Madras, Lectures on Monte Carlo methods, AMS, Providence, 2002。

最优化方法

课程号:00130630
课程名称:最优化方法
开课学期:春季
学分:3
先修课程:数学分析、数值代数
基本目的:学习解决光滑优化的无约束问题和有约束问题的基本方法、方法的基本性质等。希 望通过本课程的学习,使学生掌握基本优化方法,培养学生对算法进行理论分析的初步能力, 培养学生通过计算机用优化方法解决问题的能力。

一、优化问题概论
二、无约束问题算法结构
  • 局部解及其条件,方法的构造与特性,线搜索准则,线搜索算法,二次收敛性。
三、不同度量意义下的最速下降方法
  • 最速下降方法,Newton 方法,拟 Newton 方法,拟 Newton 方法的基本性质与 Broyden族,数值试验。
四、共轭梯度法
  • 共轭方向与其基本性质,共轭梯度法, 数值试验。
五、非线性最小二乘问题
  • 解决小剩余问题与大剩余问题的基本方法。
六、约束优化问题的最优性条件
  • 约束问题的一、二阶最优性条件。
七、约束规划问题及其方法
  • 内、外罚函数方法,乘子罚函数方法,二次规划问题及起作用集方法,SQP 方法。

教材与参考书:

  1. J. Nocedal and S. J. Wright, Numerical Optimization,Springer.
  2. 孙文瑜, 徐成贤,朱德通:最优化方法,高等教育出版社。
  3. 袁亚湘,孙文瑜:最优化理论与方法,科学出版社,1997。

偏微分方程数值解

课程号:00135520
课程名称:偏微分方程数值解
开课学期:春季
学分:3
先修课程:数值分析、数值代数和偏微分方程或数学物理方程初步、有限元部分还需要某些实 变函数和泛函分析知识。
基本目的:学习和掌握偏微分方程数值方法的基本知识,包括格式的选取、稳定性和收敛性分 析、算法的实现等,并且培养学生在偏微分方程数值求解方面分析问题和解决问题的能力,以 及实际编程计算的能力。

一、椭圆型方程的差分方法
  • 网格、网格函数与差分逼近,有限差分格式、有限体积格式,截断误差、相容性、稳定性与收敛性,边界条件的处理,基于最大值原理的误差估计,渐近误差分析与外推。
二、抛物型方程的有限差分方法
  • 显式与隐式格式,截断误差、相容性、稳定性、收敛性,最大值原理与一致稳定性, Fourier 分析方法与 L2 稳定性,耗散与守恒性,交替方向隐式格式、局部一维格式和算法的 并行性。
三、双曲型方程的有限差分方法
  • 一阶双曲型方程(组),特征线法,影响区域、依赖区域和 CFL 条件, 迎风格式与 Lax- Wendroff 格式, Fourier 分析与差分格式的耗散、色散和 L2 稳定性, 二阶双曲型方程, 显式 与隐式格式,稳定性的能量分析方法。
四、线性发展型方程有限差分方法的一般理论
  • Lax 等价定理,von Neumann 稳定性和强稳定性,修正方程分析,能量法分析。
五、椭圆边值问题的变分形式
  • 抽象变分问题,Lax-Milgram 引理,索伯列夫空间论初步,定义,逼近定理,嵌入定 理,迹定理,紧嵌入。二阶椭圆型边值问题弱解的存在唯一性、及其与古典解的等价性。
六、椭圆边值问题的有限元方法
  • Galerkin 方法和 Ritz 方法,有限元空间的构造,刚度矩阵和载荷向量的计算,有限元 代数方程组,有限元解的存在唯一性。
七、椭圆边值问题有限元解的误差估计
  • 抽象误差估计,插值误差估计,由数值积分引起的相容性误差估计
八、有限元解的误差控制与自适应方法
  • 有限元解的后验误差估计子,自适应方法。

教材与参考书:

  1. 李治平:偏微分方程数值解讲义,自编(将于2010年由北京大学出版社出版)
  2. Morton, Mayers: Numerical Solution of Partial Differential Equations, Cambridge University Press, (中译本, 人民邮电出版社)
  3. 李荣华、冯果忱:微分方程数值解法(第三版),高等教育出版社。
  4. 胡祖织、雷功炎: 偏微分方程初值问题差分方法,北京大学出版社。
  5. 应隆安: 有限元方法讲义,北京大学出版社。
  6. 汤怀民、胡健伟: 微分方程数值方法, 南开大学出版社。

流体力学引论

课程号:00130640
课程名称:流体力学引论
开课学期: 春季
学分:3
先修课程:数学分析、高等代数、偏微分方程
基本目的:本课程是计算数学专业高年级本科生的选修课,是计算数学专业研究生课程“计算 流体力学”课的先修课。本课程的内容是系统介绍流体力学的基本概念,基础理论和所涉及的 偏微分方程组的推导过程。

内容提要:

第一章 流体力学的基本概念

1.1 流体的连续介质模型
1.2 作用于流体上的力
1.3 流体的粘性和压缩性

第二章 流体运动学

2.1 描述流体运动的两种方法
2.2 流场的几何描述
2.3 质点加速度公式与质点导数
2.4 Helmholtz 速度分解定理与流体本构方程
2.5 有旋运动与无旋运动

第三章 流体动力学基本方程组

3.1 建立流体动力学方程的方法
3.2 流体动力学的积分方程
3.3 流体动力学的微分方程
3.4 热力学状态方程

第四章 理想流体动力学

4.1 Euler 方程
4.2 初边值条件
4.3 Bernoulli 方程
4.4 理想流体的旋涡运动
4.5 理想不可压无旋流动

第五章 粘性不可压流体动力学

5.1 不可压 Navier-Stokes 方程
5.2 粘性不可压流体的涡量与流函数
5.3 无量纲化的不可压 Navier-Stokes 方程
5.4 N-S方程的几个分析解
5.5 层流和湍流
5.6 小 Reynolds 数运动
5.7 层流边界层理论
5.8 湍流引论

第六章 气体动力学

6.1 基本方程
6.2 声速和 Mach 数
6.3 定常平面流动和流函数
6.4 有限振幅波的传播
6.5 正激波关系式和熵条件

教材与参考书:

  1. A.J. Chorin and J.E. Marsden, A mathematical introduction to fluid mechanics, Springer-Verlag, New York,1993.
  2. G.K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, New York, 2000.
  3. S.H. Lamb, Hydrodynamics, Cambridge University Press,Cambridge, 1932.
  4. 吴望一《流体力学(上)》,北京大学出版社,1983。

随机模拟方法

课程号:00113690
课程名称:随机模拟方法
开课学期:秋季
学分:3
先修课程:初等概率论,常微分方程,偏微分方程
基本目的:讲授基本的应用随机分析和随机模拟方法知识,通过科学与工程实际中的活生生的 应用例子让学生掌握将随机分析知识应用到具体问题中的思想和手段。

内容提要:

第一章 随机变量的基本理论

常用随机变量的分布
概率空间 期望、方差、条件期望
Borel-Cantelli引理
特征函数
常用收敛性概念
伪随机数的生成
方差减小技巧

第二章 极限定理

大数律
中心极限定理
遍历定理
大偏差理论
极大值的分布理论

第三章 马尔科夫过程

马尔科夫链
泊松过程 Chapman-Kolmogorov 方程
马尔科夫半群的生成元
Metropolis 算法,KMC 算法

第四章 Wiener 过程

高斯过程
Wiener 过程
不变原理
Wiener 过程基本性质
Wiener 测度

第五章 随机微分方程

Ito 积分
Ito 公式
Stratonovich 积分
随机微分方程数值解

第七章 应

稀有事件
化学反应随机动力学
复杂流体

教材与参考书:

  1. Tiejun Li and Weinan E: Applied Stochastic Analysis
  2. Kloeden and Platen: Numerical solution og stochastic differential, Springer. 3、Oksendal:Stochastic differential equation, Springer.

大数据分析中的算法

课程号:00136720
课程名称:大数据分析中的算法
开课学期:春季
学分:3
基本目的:大数据给数据分析和处理带来了前所未有的机遇和挑战。本课程介绍大数据分析中 一些算法:数据的稀疏和低秩表达,稀疏和低秩矩阵优化,社交网络计算中的图与网络流问题, 机器学习和数据挖掘的最优化算法,随机优化算法,并行计算等等。

内容提要:

1、课程简介
  • 课程简介,大数据分析中的最优化理论与算法介绍
2、线性规划,半定规划
  • 线性规划,单纯形方法,半定规划,对偶理论
3、稀疏优化与低秩矩阵恢复
  • 压缩感知和稀疏优化基本理论和算法 低秩矩阵恢复的基本理论和算法
  • PCA,robust PCA (matrix separation), sparse PCA
4、社交网络计算中的图和网络流问题
  • the network simplex problem
  • the shorted path problem
  • the maximum flow problem
  • the minimum spanning tree problem
5、机器学习和数据挖掘
  • 聚类分析: clustering
  • 高维数据降维: eigenvalue, SVD
  • 链接分析: page rank
  • 推荐系统: matrix completion,
  • 大规模机器学习: support vector machine
6、现代医学成像与高维图像分析
  • 相位恢复以及低温电子显微镜和三维重构中的若干反问题
7、大数据分析的随机优化算法
8、大数据分析的并行计算、分布式计算、分散式计算
  • OpenMP, MPI, 稀疏优化的并行计算,分散式计算
9、课程项目报告
  • 学生分组做小课题报告

教材与参考书:

  1. Stephen Boyd and Lieven: Convex optimization, Cambridge University Press.
  2. Jorge Nocedal and Stephen Wright: Numerical Optimization, Springer.

理论计算机科学基础

课程号:00135050
课程名称:理论计算机科学基础
开课学期:春季
学分:3
先修课程:数理逻辑
基本目的:本课程的教学目标是使学生掌握可计算性的基本概念、基本计算模型、计算模型之间的等价关系以及计算复杂性理论的初步知识,通过理论学习使学生理解理论计算机科学的基本思想,扩展学生思维,增强学生理论与工程实践相结合的能力。

一、预备知识
  • 数论函数、字函数、计算理论的发展历史、Church-Turing 论题简介
二、程序设计语言S
  • 程序设计语言 S、可计算函数、宏指令
三、原始递归函数
  • 原始递归函数、原始递归谓词、迭代运算、有界量词、极小化运算、配对函数、Gӧdel 数、原始递归运算、Ackermann 函数(简介)、字函数的可计算性
四、通用程序
  • 程序的代码、通用性定理、停机问题、递归集与递归可枚举集
五、图灵机(Turing machine)
  • Turing 机的基本模型、Turing 机的各种变形(五元 Turing 机、单向无穷带 Turing 机、 多带 Turing 机、离线 Turing 机)、非确定性 Turing 机、Turing 机与可计算性、Turing 机接受的语言、通用 Turing 机(简介)
六、过程与文法
  • 半 Thue 过程、用半 Turing 过程模拟 Turing 机、文法、递归可枚举集与部分可计算函数、 递归函数类与可计算函数类的等同性、Church-Turing 论题
七、不可判定的问题
  • 判定问题、可判定性、半可判定性、归约、Turing 机的停机问题、字问题和 Post 对应问题(简介)、有关文法的不可判定问题
八、形式语言与自动机
  • Chomsky 谱系、有穷自动机、有穷自动机与正则文法的等价性、正则表达式(简介)、关于 正则语言的泵引理、上下文无关文法、 Chomsky 范式、Bar-Hillel 泵引理、 下推自动 机、上下文无关文法与下推自动机的等价性、确定型下推自动机(简介)、上下文有关文 法(简介)
九、时间复杂性与空间复杂性
  • Turing 机的运行时间和工作空间、计算复杂性类、空间可构造性、Savitch 定理、复杂性类的真包含关系
十、NP 完全性
  • Cook-Karp 论题、 P 与 NP、多项式时间变换、 NP 完全性、 Cook 定理、若干 NP 完全问题(简介)、coNP
十一、PSPACE 类和 P 类
  • PSPACE 完全性、带量词的布尔公式的可满足问题、广义地理学问题、带幂运算的正则表 达式的全体性(简介)、对数空间变换、L 类、NL 类、P 完全性
十二、随机算法与随机复杂性类简介
  • 近似算法、随机算法、随记复杂性类

教材与参考书:

  1. 张立昂《可计算性与计算复杂性导引》,第 2 版,北京大学出版社,2004.
  2. Michael Sipser: Introduction to the Theory of Computation, second edition(影印本), 机械工业出版社,2006.(中译本: 唐常杰,陈鹏,向勇,刘齐宏 译:《计算理论导引》机械工业出版社,2007.)

算法设计与分析

课程号:00110060
课程名称:算法设计与分析
开课学期:秋季
学分:3
先修课程:数学分析, 线性代数,数据结构
基本目的:1.掌握算法评估的基本原理与方法;2.以传统算法为蓝本,以经典策略为依据,提高学生设计新算法的能力。

内容提要:

第一章 引言
  1. 计算机算法的界定,算法评判的准则,时间复杂度与空间复杂度的计算,复杂度 的渐近分析,多项式复杂度算法和指数复杂度算法,可行算法
  2. 算法语言:SPARKS
第二章 分治法
  1. 分治法的原理,整数位乘,Strassen 矩阵乘法,快速 Fourier 变换
  2. 时间复杂度的递归表达式,Master 定理
  3. 二分检索算法
  4. 选择问题:找最大和最小元素;找最大和次大元素,魔鬼策略
  5. 排序问题:插入排序;归并排序;快速排序,排序算法时间复杂度的下界估计, 排序算法的优劣性比较
第三章 贪心法
  1. 最优化问题的框架,贪心法的思路,最小生成树的 Kruskal 算法
  2. 磁带上的最优存储
  3. 背包问题
  4. 带有限期的作业调度
  5. 拟阵与贪心算法
第四章 动态规划法
  1. 多阶段问题与最优性原理,矩阵连乘问题
  2. 最优二分检索树
  3. 0/1背包问题
  4. 流水线调度问题
第五章 基本周游与检索方法
  1. 宽度优先检索与最少操作问题
  2. 深度优先检索与双连通分图
  3. 代码最优化
第六章 回溯法
  1. 回溯法原理,骑士巡游问题
  2. 稳定婚姻问题
第七章 分枝限界法
  1. 分枝限界原理概述
  2. 15-谜问题
第八章 NP-难度和 NP-完全问题简介

教材与参考书:

  1. 邹海明,崔国华,余祥宣,《计算机算法基础》,华中理工大学出版社
  2. 朱洪,陈增武,段振华,周克成,《算法设计与分析》,上海科学技术文献出版社
  3. 卢开澄《计算机算法导引——设计与分析》,清华大学出版社
  4. 张益新,沈雁,《算法引论》,国防科技大学出版社。
  5. E.Horowitz and S.Sahni:Fundamental of Computer Algorithms,Computer Science
  6. D.E.Knuth:The Art of Computer Programming (V.3):Sorting and
    Searching,Addison Wesley &清华大学出版社。
  7. Sara Baase,Allen Van Gelder:Computer Algorithms–Introduction to Design and Analysis,Pearson Education 出版集团&高等教育出版社。
  8. T.H.Cormen,C.E.Leiserson,R.L.Rivest,C.Stein:Introduction to Algorithms, TheMIT Press &高等教育出版社

数字信号处理

课程号:00130830
课程名称:数字信号处理
开课学期:秋季
学分:3
先修课程:数学分析、线性代数、解析几何(高等数学)
基本目的:数字信号处理是信息与计算科学专业信息方向的一门专业基础课,具有很强的应用 性。本课程主要讲述数字信号处理的基本概念、原理及方法,培养学生用数学方法对信号进行 分析和处理的意识和初步能力。

内容提要:

一、连续信号的频谱和傅氏变换
  1. 连续信号的频谱(定义、相位谱、振幅谱)
  2. 频谱的基本性质(共轭、对称、时移、频移、展缩、翻转、微分等定理)
二、离散信号和抽样定理
  1. 离散信号频谱的定义
  2. 带限信号、奈奎斯特频率、实截频信号的抽样定理 3. 非带限信号的抽样定理、重抽样定理、假频现象
三、滤波与褶积,Z 变换
  1. 离散信号滤波的概念与褶积(卷积)的定义
  2. 离散信号的 Z 变换(定义、Z 变换与频谱的对应关系)
四、线性时不变滤波器与系统
  1. 线性时不变系统及其时间(脉冲)响应函数的定义
  2. 串联、并联及反馈系统(概念、图解)
  3. 有理系统的定义及其时间响应函数
五、冲激函数—— \delta 函数
  1. δ \delta δ 函数的定义、微商与频谱
  2. δ \delta δ 函数求函数的频谱
  3. 熟练掌握常见的傅氏变换对(连续和离散情形):方波、三角波、高斯、单双边指数、 δ \delta δ 、 正余弦、梳状、符号、阶跃等
六、希尔伯特变换与实信号的复数表示
  1. 连续和离散希尔伯特变换的定义(叙述)
  2. 希尔伯特变换的应用(信号的包络、瞬时相位、瞬时频率)
七、有限离散傅氏变换
  1. 有限离散傅氏变换的定义(叙述)
  2. 快速傅氏变换思想、公式(时域分解 FFT 算法、频域分解 FFT 算法)
  3. 利用 FFT 计算卷积
八、相关分析
  1. 相关的概念
  2. 相关与卷积的关系
  3. 利用 FFT 计算相关函数
九、有限长脉冲响应滤波器和窗函
  1. 理想滤波器(低通、高通、带通、带阻)
  2. 吉布斯现象及其产生原因
  3. 时窗函数及其作用(叙述)
十、递归滤波器的设计
  1. 递归滤波(概念、稳定性的充分必要条件)
  2. 由滤波函数获得稳定的递归滤波公式(正向递归滤波、反向递归滤波)
    教学方式:每周授课 3 学时,采用理论讲授和编程实例结合式教学,部分书本内容改为课 下自学,课上补充相关的信号处理应用专题。

教材与参考书:

  1. 程乾生《数字信号处理》,北京大学出版社, 2003.
  2. 程乾生《信号数字处理的数学原理》,石油工业出版社, 1993.
  3. 张贤达《现代信号处理》,清华大学出版社,1995
  4. S. D. Stearns and D. R. Hush, Digital Signal Analysis, Prentice Hall, 1990.

人工智能

课程号:00110950
课程名称:人工智能
开课学期:春季
学分:3
基本目的:旨在讲授人工智能的基本理论、方法和技术。每年春季开设本课程,主要内容包括: 智能主体,搜索技术,约束满足问题,一阶逻辑,自动推理,知识表示,规划器,不确定推理, 决策方法,机器学习,自然语言理解,机器人等。

内容提要:

一、引论

1.1 什么是人工智能
1.2 人工智能基础
1.3 人工智能历史
1.4 研究现状

二、智能主体

2.1 主体
2.2 理性
2.3 属性
2.4 环境类型
2.5 主体结构

三、搜索

3.1 问题求解主体
3.2 基本搜索算法
3.3 启发式搜索
3.4 局部搜索
3.5 在线搜索
3.6 对抗搜索

四、约束满足

4.1 约束满足问题
4.2 回溯搜索
4.3 约束传播
4.4 局部搜索
4.5 结构与分解

五、逻辑主体

5.1 知识主体
5.2 积木世界
5.3 逻辑
5.4 命题逻辑
5.5 定理证明
5.6 归结
5.7 模型检测
5.8 命题主体

六、一阶逻辑

6.1 一阶逻辑
6.2 语法与语义
6.3 句子
6.4 一阶主体

七、推理

7.1 证明
7.2 归约
7.3 完全性
7.4 合一
7.5 广义分离规则
7.6 正向与反向链
7.7 归结
7.8 逻辑程序设计

八、规划

8.1 规划问题
8.2 STRIPS 操作
8.3 情态演算
8.4 偏序规划

####九、知识表示

9.1 知识
9.2 本体
9.3 动作与变化
9.4 心智状态
9.5 产生式系统
9.6 框架与语义网
9.7 常识

十、不确定性

10.1 不确定性
10.2 概率
10.3 语法与语义
10.4 推理
10.5 独立性
10.6 贝叶斯规则
10.7 信念网络
10.8 其它不确定推理方法

十一、决策

11.1 优先性
11.2 效用
11.3 多属性效用
11.4 决策网
11.5 信息价值

十二、学习

12.1 学习主体
12.2 归纳学习
12.3 决策树学习
12.4 贝叶斯学习
12.5 极大似然学习
12.6 贝叶斯网学习
12.7 学习逻辑描述
12.8 计算学习理论

十三、语言

13.1 通讯
13.2 语法
13.3 语法分析

十四、机器人

14.1 机器人
14.2 局化与映射
14.3 运动规划
14.4 控制

十五、人工智能哲学

15.1 哲学问题
15.2 弱 AI
15.3 强 AI
15.4 伦理问题
15.5 未来世界


程序设计技术与方法

课程号:00135040
课程名称:程序设计技术与方法
开课学期:秋季
学分:3
先修课程:计算概论,数据结构,理论计算机科学基础,数理逻辑,算法设计与分析
基本目的:在学习了基本程序设计技术(计算概论),算法与数据结构、数理逻辑、自动机理 论的基本概念和技术的基础上,通过本课程进一步加强学生的程序设计能力和使用计算机解 决问题的能力。课程中将讲解一些软件和程序设计与验证的高级技术与方法,帮助学生进一步 认识通过程序方式求解问题的过程,所讲授的重要技术和方法主要包括面向对象、定理证明、 模型检查、测试等。课程中还将对并发问题、进程代数等与程序有关的理论问题,UML、设计 模式等软件开发中广泛应用的概念和方法,以及当前的新兴技术进行适当介绍。

内容提要:

1. 概论(2 学时)
2. 面向对象(4 学时)
  • 类与对象、方法与属性、多态、继承、重用
3.使用 UML 的系统建模(4 学时)
  • 类图、对象图、交互图、状态图、活动图、组件图、配置图
4.设计模式(4 学时)
  • 设计模式的概念、创建型模式、结构型模式、行为模式
5.形式化模型与规范(4 学时)
  • 顺序与并发系统建模、基于状态的描述、变迁系统、非确定性、并行行为、共享变量与信道通信、状态爆炸问题
6.模型检查(14 学时)
  • 线性时间行为、死锁、安全性、不变式、活性、公平性、正则性质、正则语言与自动机、线性时态逻辑 LTL、LTL 模型检查、计算树逻辑 CTL、CTL 模型检查
7. 定理证明(2 学时)
  • 程序正确性、公理化程序验证、并发程序验证、证明系统
8. 进程代数(2 学时)
  • 通信系统演算 CCS、迹等价、失败等价、模拟与互模拟等价
9.软件测试(2 学时)
  • 控制流覆盖、数据流覆盖、等价划分、黑盒测试、概率测试
10.方法集成(2 学时)
  • 抽象、黑盒系统、一致性测试
11.新兴技术选讲(11 学时)
  • 多核编程、协调模型、基于机器学习的程序验证

教材与参考书:

  1. Harold Abelson,Gerald Jay Sussman,Julie Sussman,Structure and Interpretation of Computer Programs, MIT。中译本《计算机程序的构造与解释》,机械工业出版社。
  2. B. Stroustrup,The C++ Programming Language,Addison-Wesley。影印本:高教出版 社,中译本《C++语言程序设计》,机械工业出版社。
  3. Barbara Liskov and John Guttag, Program Development in Java, Abstraction, Specification and Object-Oriented Design, Addison-Wesley。影印本:电子工业出版 社,中译本《程序开发原理》,电子工业出版社。

信息科学基础

课程号:00130030
课程名称:信息科学基础
开课学期:春季
学分:3
先修课程:数学分析、高等代数、概率论
基本目的:学习和掌握信息的度量、表示和传输的基本理论,培养学生运用信息的概念和编码 方法解决信息处理和传输过程中信息压缩、噪声干扰和失真方面的基本问题的能力,并为其它 信息科学的专业课程奠定基础。

内容提要:

一、 概论
  • 信息科学的基本问题,主要分支介绍,信息理论的发展简史,特点与应用。
二、 信息与熵
  • 信源、信息的度量和 Shannon 熵,联合熵的定义与性质,条件熵的定义与性质,它们之 间的关系,信息度量的公理化表示及其熵的唯一性,熵函数的性质:非负性、极值性、 可加性、对称性、扩展性、凸性,连续型随机变量的微分熵及其基本性质。
三、 互信息
  • 事件的互信息、两个随机变量之间的互信息,互信息与其他熵之间的关系,多个随机变 量的互信息,互信息函数的性质,连续型随机变量的互信息。
四、 离散信源的无差错编码
  • 信源,信源的分类,信源编码,渐近等同分割性,离散无记忆信源的定长编码定理,前 缀码,Kraft 不等式,Huffman 编码与最优编码定理, 离散平稳信源及其编码定理,马尔可夫信源及其编码定理。
五、 离散无记忆信道的编码理论
  • 信道容量的定义,基本性质,简单信道的容量计算,一般信道的容量迭代算法,信道编 码,译码方法,理想译码器,最大似然译码器,联合典型序列,信道编码定理,Fano 不 等式,逆编码定理,信源-信道联合编码, 高斯信道模型、信道容量、编码定理、逆编 码定理, 信道编码实例:重复码和 Hamming 码。
六、 线性码
  • 线性分组码的定义及其代数表示, 系统编码、校验矩阵、系统码与线性码在性能上的等 价性,系统编码的最优译码, 线性码的差错概率和纠错能力(充填半径、覆盖半径、最 小距离(重量),完全码,数多项式)。
七、 信源的率失真函数与熵压缩编码
  • 熵压缩编码,失真度量,信息速率失真函数—率失真函数,率失真函数的基本性质,连 续无记忆信源的率失真函数,上下界分析,标量量化方法,限失真编码定理。

教材与参考书:

  1. 石峰 莫忠息:信息论基础,武汉大学出版社,2002。
  2. 沈世镒 陈鲁生: 信息论与编码理论,科学出版社,2002。
  3. 叶中行: 信息论基础,高等教育出版社,2007。
  4. 黄德修: 信息科学导论,中国电力出版社,2001。

数理逻辑

课程号:00130730
课程名称:数理逻辑
开课学期:秋季
学分:3
先修课程:
基本目的:本课程是数学和计算机科学专业基础课。主要内容是讲授一阶逻辑演算,包括命题 逻辑,一阶(谓词)逻辑和基本数学系统等。

内容提要:

0 引言

1 非形式命题演算
1.1 命题和连接符
1.2 真值函数和真值表
1.3 操作和替换规则
1.4 范式
1.5 连接符的完备集
1.4 推理及有效性

2 形式命题演算
2.1 形式系统 L
2.2 L 的完备性定理

3 非形式谓词演算
3.1 谓词和量词
3.2 一阶语言
3.3 解释
3.4 可满足性和真值
3.5 斯科林化

4 形式谓词演算
4.1 形式系统 KL
4.2 等价和替换
4.3 前束范式
4.4 K 的完全性定理
4.5 模型

5 数学系统
5.1 引子
5.2 带等词的一阶系统
5.3 群论
5.4 一阶算术
5.5 形式集论
5.6 一致性和模型

6 哥德尔不完全性定理
6.1 引子
6.2 可表达性
6.3 递归函数和关系
6.4 哥德尔数
6.5 不完备性证明

7 可计算性, 不可解性, 不可判定性
7.1 算法与可计算性
7.2 图灵机
7.3 字问题
7.4 形式系统的不可判定性

教材与参考书:

  1. A. G. Hamilton,《Logic for Mathematicians》,Revised Edition (影印版), 清华大学出版社,2003
  2. 陆钟万《面向计算机科学的数理逻辑》,第 2 版,科学出版社,2002

集合论与图论

课程号:00135290
课程名称:集合论与图论
开课学期:春季
学分:3
先修课程:高等数学,线性代数,数据结构
基本目的:学习和掌握集合论与图论的基本知识,重点培养学生处理二元关系类离散问题的综合能力。

内容提要:

第一部分:集合论

一、集合(2 学时)

  1. 集合的运算律,容斥原理
  2. 集合列的极限

二、基数(2 学时)

  1. 可数集与不可数集
  2. 基数的比较,Cantor-Bernstein 定理 3) 基数的性质,连续统假设,Cantor 定理

三、二元关系(约 6 学时)

  1. 二元关系的运算,性质与闭包
  2. 等价关系与集合的划分
  3. 偏序关系,链与反链,良序与超限归纳原理

四、布尔代数(约 8 学时)

  1. 格的偏序特征与代数结构及其等价性
  2. 子格,格的同态与同构
  3. 模格,分配格,有补格
  4. 布尔代数,Stone 表示定理
  5. 布尔函数,析取范式与合取范式
第二部分:图论

一、图的概念,运算与表示(3 学时)

二、道路与回路(9 学时)

  1. 道路与回路概述,
  2. 图的连通性,连通度,Menger 定理,可靠通讯网的构作
  3. 最短道路,Dijkstra 算法,Warshall-Floyd 算法
  4. Euler 图,DeBruijn 序列
  5. Hamilton 图,k-方体与 Gray 码

三、树(约 7 学时)

  1. 树的特征,回路系统与割集系统
  2. 基本树变换,最小生成树,Kruskal 算法,Prim 算法
  3. 根树,哈夫曼树与编码

四、平面图与图的着色(约 4 学时)

  1. 平面图的性质与图的可平面性判定,对偶图
  2. 点着色,边着色,平面图的域着色,四色定理

五、匹配,网络(约 4 学时)

  1. 图的匹配与可增广道路,二部图的匹配,匈牙利算法
  2. 网络,可行流,最大流与最小割切,Edmonds-Karp 算法

教材与参考书:

  1. 耿素云《集合论与图论》,北京大学出版社。
  2. 戴一奇,陈卫,胡冠章等,《图论与代数结构》,清华大学出版社。
  3. 王朝瑞《图论》,北京理工大学出版社。
  4. 王树禾《图论及其算法》,中国科学技术大学出版社。
  5. J.A.Bondy and U.S.R.Murty:Graph Theory with Applications,The Macmillan Press LTD.
  6. E.G.Goodaire,M.M.Parmenter:Discrete Mathematics with Graph theory.
  7. K.H.Rosen,Discrete Mathematics and Its Applications,McGraw-Hill &机械工业出版社。

网络空间安全

课程号:00137160
课程名称:网络空间安全
开课学期:秋季
学分:3
先修课程:
基本目的:信息安全已经成为信息时代的重要保障。它的研究既关系到是国家战略、国防,又 关系到普通民众的隐私和生活安全。本课程介绍网络空间安全的基础知识,注重知识的系统性 和覆盖面的宽泛性。本课程从建立信息安全体系结构出发,分解为技术体系、组织体系和管理 体系。从安全策略或安全目标上把技术体系分解为系统安全、数据安全和事务安全,而从工程 实现角度又把技术体系分解为物理环境安全、计算机系统安全、网络通信安全和应用平台安全, 最后还对一些实用的信息安全技术进行了讲解。本课程作为信息安全的引论,不要求学生对信 息安全的任何准备知识。

内容提要:

一、信息安全简介(2)

  • 保密通信到信息安全的发展历史,网络空间安全的概念与研究目标,信息安全技术与非技
    术因素。

二、信息安全体系结构(4)

  • 信息系统面临的攻击与安全目标,讲述三种安全目标、十二种安全机制、OSI 安全体系结
    构、组织体系与管理体系。

三、加密、身份识别与消息鉴别(10)

  • 密码学的基本概念。各种密码算法的作用与实现,包括分组密码、序列密码、数字签名、 哈希函数及若干密码新技术,身份识别技术、消息鉴别码,包括口令识别、生物特征识别、 密码鉴别协议、零知识证明。

四、访问控制理论(8)

  • 访问控制矩阵模型、Bell-Lapadula 模型、Biba 模型、Clark-Wilsen 模型、RBAC 模型、PMI 模型。

五、计算机系统安全(6)

  • 计算机体系结构与操作系统简介、可信计算基、访问监视器、安全内核方法、可信计算基,操作系统安全、计算机病毒防护、可信计算平台。

六、数据安全(6)

  • 数据库与数据库管理系统简介、数据库的访问控制、备份与恢复、容错系统,数据的机密性、数据的完整性、隐私安全。

七、网络安全(6)

  • 网络体系结构与 TCP/IP 网络简介、防火墙、入侵检测、VPN 与 IPSec。

八、应用安全(6)

  • 应用安全基础设施、Web 安全、邮件安全、网络身份安全、电子交易安全、云计算与大数据安全。

九、安全审计(2 学时)

  • 审计日志、安全审计、计算机取证。

十、信息安全评估与工程实现(2 学时)

  • 计算机信息系统安全保护等级划分准则、可信计算机系统评估准则 TCSEC 、通用安全准则 CC、SSE-CMM 模型体系结构。

教材与参考书:


计算机图形学

课程号:00130210
课程名称:计算机图形学
开课学期:春季
学分:3
先修课程:计算概论,数据结构与算法,解析几何,线性代数,微积分。
基本目的:1. 学习计算机图形学的基本知识和基本技术; 2. 重点是三维物体的建模,生成 及 OpenGL 编程; 3. 使学生能编写基本的图形程序。

内容提要:

1、 计算机图形学介绍: 计算机图形学的历史,应用,标准和软;
2、基本输出图元: 点, 线,多边形,圆和椭圆等几何图元的生成算法;
3、 OpenGL 编程初步;
4、维几何变换;二维观察流程, OpenGL的二维观察流程及函数;
5、三维几何变换:三维观察流程, 可见面判别算法, OpenGL的三维观察流程及函数;
6、 光照模型,面绘制算法及 OpenGL 中的光照处理;
7、 样条表示(选讲内容)。

教材与参考书:

  1. Edward Angel:Interactive Computer Graphics,A Top Down,Addison- Wesley,2008.
  2. 孙家广,杨长贵,《计算机图形学》,清华大学出版社,1998.
  3. J. D. Foley,A.van Dam: Introduction to Computer Graphics,机械工业出版社,2004.

计算机图像处理

课程号:00135590
课程名称:计算机图像处理
开课学期:春季
学分:3
先修课程:数学分析、线性代数(高等数学)、数值分析(计算方法)、数字信号处理
基本目的:数字图像处理是一门信息专业课程,旨在讲授有关利用计算机进行图像处理的理论 和方法,目的是学习计算机图像处理的基本知识和基本技术,能编写基本的图像处理程序。

内容提要:

第一章 绪论
  1. 图像、图像处理、数字图像处理的概念
  2. 数字图像处理的特点:稳定性、自适应性、普适性
  3. 计算机视觉:数据维数、视频分析、困难点
  4. 图像表示:Hierarchy、Two Levels、3D 视觉
第二章 图像性质
  1. 度量和拓扑性质(距离定义、邻域定义及其矛盾、边缘 vs 边界)
  2. 直方图(定义、物理含义、性质、应用、均衡化、规定化)
  3. 图像熵(定义、性质)
  4. 视觉感知(图像对比度、图像锐度、视觉错觉)
  5. 图像质量(四个特性指标及其影响因素)
第三章 图像获取
  1. 光学理论(分类、适用场合、基本辐射度量和光度量)
  2. 颜色:电磁波光谱、颜色空间、人眼光谱视函数
  3. 典型光学元器件 (分类、实现功能)
  4. 典型光学系统 (人眼、望远镜、显微镜、相机)
  5. 光电探测器 (分级、特征参数、光电转换类型)
  6. 噪声(产生原理、分类、构造方法)
第四章 数据结构
  1. 图像表示的四个层次:形象图、分割图、几何表示、关系模型
  2. 传统图像数据结构:矩阵、链表、拓扑数据结构(图)、关系结构
  3. 分层数据结构:金字塔(M 型和 T 型)、四叉树
  4. 图像正交变换:Fourier 变换、余弦变换、Hadamard 变换、小波变换等
第五章 图像预处理
  1. 图像灰度值变换
    a) 基于像素位置和灰度的变化:基于乘性退化模型
    b) 基于灰度的变换:灰度拉伸、伪彩色映射、直方图均衡化
  2. 图像几何变换
    a) 像素坐标变换:多项式变换、双线性变换、仿射变换
    b) 灰度插值:最近邻插值、双线性插值、双三次插值
  3. 局部预处理方法
    a) 图像平滑:平滑方法及相应的平滑算子
    b) 图像锐化:图像边缘探测、边缘检测器(锐化算子、二阶导数零交叉 LoG/DoG、多尺度描述、Canny 边缘检测、多光谱图像边缘、拐角点检测、参数模型下的边缘检测)
  4. 图像复原
    a) 图像退化原因、退化模型、退化函数
    b) 反卷积、逆滤波、Wiener 滤波(频域滤波函数形式和推导)
第六章 图像分割
  1. 阈值分割:p-tile、全局阈值、最优阈值、多光谱阈值分割
  2. 边缘分割:边缘连接、模板匹配、边缘跟踪、Hough 变换
  3. 区域分割:区域增长模型、区域分裂与聚合、基于形态学的分水岭分割
  4. 基于图割(Graph cuts)算法的分割

教材与参考书:

  1. Milan Sonka 等编写:Image Processing,Analysis and Machine Vision。1999, Brooks/Cole Publishing Company。
  2. 赵荣椿等编著《数字图象处理导论》,西北工业大学出版社,2000年8月出版。
  3. K. R. Castleman:Digital Image Processing,1996,Prentice Hall,Inc,1998 年清华出版社影印出版。

密码学

课程号:00132610
课程名称:密码学
开课学期:秋季
学分:3
先修课程:高等代数、初等数论
基本目的:本课程仅是一个入门,但在此基础上为深入研学密码学奠定基础。

内容提要:

第一章古典密码学 6学时
第二章Shannon理论 6学时
第三章 分组密码与高级加密标准 6学时
第四章Hash函数 6学时
第五章RSA密码体制和证书因子分解 10学时
第六章公钥密码学和离散对数 10学时
第七章签名方案 10学时

教材与参考书:

  1. Douglas R. Stinson (冯登国译):密码学原理与实践(第三版),电子工业出版社, 2010。
  2. 陈少真:密码学基础,科学出版社,2008。 3、冯登国、裴定义:密码学导引,科学出版社,1999。
    4、Wenbo Mao, Modern Cryptography, Theory & Practice, Prentice Hall PTR,2004.
    (有中译本)
    5、Bruce Schneier (吴世忠、祝世雄、张文政等译), 应用密码学—协议、算法与 C 源
    程序, 机械工业出版社, 2000.

软件工程

课程号:04834220
课程名称:软件工程
开课学期:全年
学分:4
先修课程:一门高级程序设计语言、数据结构。 软件工程课需要学生先修一门高级程序设计 语言,以及数据结构课,具有一定的程序设计基础。
基本目的:本课程旨在系统地介绍软件系统的开发、维护和项目管理的方法、技术和工具,培 养学生在软件开发、软件维护、项目管理等方面,尤其是在需求捕获与分析、软件设计和构造、 软件测试等方面的能力,使得学生能够在软件开发中灵活应用软件工程方法、技术和工具,创 建高质量的软件产品。 软件工程的课程目标如下: 1、使学生掌握软件工程基本思想,包括 软件工程目标、软件工程原则及软件工程活动。 2、使学生掌握软件开发和维护的方法学,了 解软件开发过程和软件项目管理基础知识。通过案例教学和课程实践培养学生软件开发和维 护的能力。 3、通过课程实践,培养学生软件项目管理的意识,即对一个软件项目的工作量、 成本、进度和人员的计划和管理。 4、培养学生工程素质、创新精神和团队精神。

内容提要:

  1. 软件工程引言 4~2 学时
    介绍软件工程概念的提出以及发展历程,并分析软件开发的本质。
  2. 软件生存周期过程 4~2 学时
    简介 ISO/IEC 12207 标准,并介绍件开发需要定义哪些映射。
  3. 软件开发模型 4~2 学时
    介绍常见的几种软件开发模型,包括瀑布模型、演化模型、增量模型、螺旋模型、喷泉模 型、快速原型模型等。
  4. 软件需求与软件需求规约 4~2 学时
    软件需求的定义和分类、需求捕获技术,软件需求规约
  5. 结构化分析 6~4 学时
    结构化需求分析的步骤、软件需求规约、需求验证技术、实例研究。
  6. 结构化设计 6~4 学时
    总体设计的目标及其表示、总体设计方法、设计评价准则与启发式规则、设计优化、详细 设计、软件设计规格说明书、实例研究。
  7. 面向对象方法——UML 8~6 学时
    面向对象方法发展以及UML(Unified Modeling Language)的提出、表达客观事物的术 语、表达关系的术语、组织信息的通用机制–包、模型表示工具。
  8. 面向对象分析与设计 12~10 学时
    介绍面向对象的分析与设计
  9. 设计模式 4~2学时
    介绍经典的设计模式
  10. 软件构造 4~2 学时
    介绍软件构造过程、编程标准与风格
  11. 软件测试 8~6 学时
    软件测试目标与软件测试过程模型、软件测试技术、软件测试步骤、静态分析技术-程序 正确性证明。
  12. 软件工程管理 8~6 学时
    软件工程管理活动;软件规模、成本和进度估算;过程规划与管理;软件质量保证;能力 成熟度模型 CMM;ISO9000 标准;
  13. 软件开发工具与环境 4~2 学时
    计算机辅助软件工程(CASE)概述、软件开发工具与环境的分类、典型工具的介绍。
  14. 软件维护 4~2 学时
    软件维护的概念、维护分类、维护的方法
  15. 互联网软件工程方法与技术 6~4
    敏捷软件开发、移动应用开发、大数据驱动的软件工程等
  16. 课程实践1 8~4 学时
    软件项目计划、控制和收尾
  17. 课程实践2 6~2 学时
    需求捕获和描述
  18. 课程实践3 6~4 学时
    结构化需求分析与设计/面向对象分析和设计
  19. 课程实践4 6~4 学时
    敏捷软件开发
  20. 课程实践5 6~2 学时

教材与参考书:

  1. 王立福,孙艳春,刘学洋,《软件工程》,北京大学出版社,2009 年 10 月。
  2. 邵维忠,杨芙清,《面向对象的分析与设计》,清华大学出版社,2013 年 1 月。
  3. 施瓦尔贝(schwalbe, K.)著,《IT项目管理》,北京:机械工业出版社,2011 年 1月。
  4. Patton, R.著,张小松等译,《软件测试》,北京:机械工业出版社,2006 年 4 月。
  5. Ian Sommerville 著,程成等译:Software Engineering,北京:机械工业出版社,2011年4月。
  6. Roger S.Pressam 著,Software Engineering-A Practitioner Approach, 北京:机械工业出版社,2015年2月。

操作系统

课程号:04834260
课程名称:操作系统
开课学期:全年
学分:4
基本目的:任何计算机都必须在加载相应的操作系统之后,才能构成一个可以运转的计算机系统。操作系统的性能高低,决定了整体系统的性能;操作系统本身的安全可靠程度,决定了整 个系统的安全性和可靠性。操作系统是软件技术的核心和基础运行平台。因此,相关专业的学 生必须学习和掌握操作系统的基本原理和专业知识。本课程的目的如下: 1.介绍操作系统的基本概念、基本结构及运行环境。 2.介绍操作系统原理、设计方法和实现技术。 3.介绍操 作系统的演化过程、发展研究动向、新技术以及新思想。 4.介绍各种有代表性的、典型的操作系统实例(例如:Windows、Solaris、Linux)。 5.培养学生分析问题、解决问题的基本能力,培养创造型人才。 6.设计和实现一个小型操作系统,使学生从理论与实践结合的角 度,掌握操作系统基本原理和软件工程知识,以及操作系统设计的新思想。

内容提要:

  1. 操作系统概述(Introduction to operating system) 4 学时
    操作系统基本概念、特征、分类、主要功能;操作系统发展历史;典型的操作系统简介;操作系统标准化。
  2. 操作系统硬件环境(Hardware Interface) 4 学时
    CPU 状态、存储系统、中断系统、I/O 技术、时钟、高速缓存。
  3. 用户接口及系统启动(User Interface and System Booting ) 2 学时
    用户与操作系统接口、系统调用、操作系统的启动过程。
  4. 进程(线程)管理(Processes and Threads) 6 学时
    并发环境与多道程序设计,进程的基本概念、进程控制,进程的同步与互斥,进程间通信, 处理机调度,线程基本概念,线程的实现机制。实例:Windows进程线程模型,Solaris进程线程模型。
  5. 存储管理(Memory Management) 6 学时
    分区存储管理,页式存储管理,覆盖技术与交换技术,虚拟存储技术与虚拟页式存储管理。 实例:Windows 内存管理,Linux 的伙伴系统。
  6. 文件管理(File Systems) 8 学时
    文件的基本概念,文件结构和存取方式,文件目录,文件系统的实现,文件的操作,文件 系统的可靠性和安全性,文件系统的性能问题。实例:Windows 文件系统 FAT、NTFS;UNIX 文件系统
  7. I/O系统(Input/Output) 4 学时
    I/O 硬件组成,I/O 软件的特点及结构,相关实现技术,设备管理,典型的外部设备,设备 驱动程序,I/O 性能问题及解决方案。
  8. 死锁 (Deadlock) 2 学时
    死锁的基本概念,死锁的解决方案(死锁预防、死锁避免、死锁检测与解除),资源分配图。
  9. 操作系统设计 (Operating System Design) 2 学时
    操作系统设计目标,操作系统结构设计,Windows 操作系统的设计以及其他设计问题等。
  10. XV6 内核源代码分析(Understanding Linux Kernel Source Code) 6 学时
    进程管理,中断机制与系统调用,进程同步机制,进程间通信,存储管理
  11. 上机实习(Projects) 课外时间 30~22 学时
    Nachos 或 JOS 或 Xinu 操作系统设计与实现
  12. 习题课等 4 学时
  13. 专题讨论 8 学时

教材与参考书:

  1. 陈向群,杨芙清:操作系统教程,北京大学出版社,2006 年。
  2. [美] William, Stallings:操作系统——精髓与设计原理(第八版),电子工业出版社,2017 年 2 月。
  3. Andrew S.Tanenbaum:现代操作系统(原书第 4 版),机械工业出版社,2017年7月。
  4. [美]亚伯拉罕*西尔伯沙茨(Abrabam):操作系统概念(原书第 9 版),机械工业出版社,2018 年 7 月。

数据库概论

课程号:04830220
课程名称:数据库概论
开课学期:全年
学分:3
先修课程:数据结构
基本目的:1、深入理解数据库系统的基本概念、原理和方法。 2、掌握关系数据模型及关系 数据语言,能熟练应用 SQL 语言表达各种数据操作。 3、掌握实体-联系模型的概念和方法, 关系数据库规范化理论和数据库设计方法,掌握数据库应用接口技术和数据库调优技术,初步 具备进行数据库应用系统开发的能力。 4、对数据库领域研究的深入课题有大致了解,激发在 此领域中继续学习和研究的愿望,为学习数据库系统高级课程做准备。

内容提要:

  1. 引言 3学时
    数据管理技术的发展阶段(数据模型、数据模式、数据库系统结构)
  2. 实体-联系模型 4 学时
    ER 模型基本概念(E-R 模型的扩展特性、E-R 模型向关系模型的转换。)
  3. 关系模型 4学时
    关系模型定义(关系代数、关系演算)
  4. SQL语言8学时
    SQL 数据定义功能
    SQL 数据操纵功能
    视图
    断言、触发器、存储过程
    数据库安全性
  5. 数据库应用接口技术 2 学时
    嵌入式 SQL(ODBC,JDBC,ADO,PHP,ColdFusion)
  6. 关系数据理论 6学时
    关系数据库设计中的问题(函数依赖概念及其推理规则、多值依赖概念及其推理规则、范式概念、模式分解概念及相关算法)
  7. 事务 4学时
    事务概念及其 ACID 性质,事务模型(事务调度的概念,事务调度中的不一致问题、SQL中的事务隔离性级别定义、事务的冲突可串行化及视图可串行化判定)
  8. 事务管理 5学时
    并发控制(故障恢复)
  9. XML2学时
    XML 基本概念,DTD,XML Schema(XML 查询与存储,XPATH,XML与关系的相互转换)
  10. 数据库性能调优 6学时
    数据库性能调优框架(数据库性能基准测试、SQL 调优,事务调优,应用接口调优,RAID、数据库物理设计)
  11. 面向对象数据库和对象-关系数据库2学时
    面向对象数据模型的基本概念,对象持久性,OQL,对象—关系数据库
  12. 分布式数据库 4学时
    分布式数据库系统的体系结构、基本特征、目标(分布式数据存储、分布式查询处理的策、分布式事务模型、数据复制的不同途径)
  13. 数据库新技术 4学时
    新型数据模型:序列和图数据模型,数据流(新型数据库应用领域:数据仓库和 OLAP、数据挖掘、空间和地理数据库、移动数据库)

教材与参考书:

  1. Abraham Silberschatz:数据库系统概念,机械工业出版社,2005.
  2. Ramez Elmasri:数据库系统基础,清华大学出版社,2011。

计算方法 B

课程号:00130280
课程名称:计算方法 B
开课学期:秋季
学分:3
先修课程:高等数学、线性代数、初等概率论
基本目的:学习和掌握计算方法的基本概念及基本方法,运用计算方法解决科学与工程计算问题。

内容提要:

一、引论
  • 绝对误差与相对误差,误差对计算的影响,稳定性。
二、函数的多项式逼近
  • 多项式插值问题的提法,Lagrange插值,Newton插值,分段低阶多项式插值,最小二乘 多项式拟合,最佳平方逼近,正交多项式。
三、数值微分与数值积分
  • 数值微分,数值积分。
四、线性方程的数值解法
  • 消元法,平方根法和追赶法,敏感性与稳定性分析,古典迭代法,解 LAS 的极小化方法 (Minimization Method)。
五、线性最小二乘问题的数值解法
  • 变换法,正交分解法,亏秩最小二乘问题的数值解法。
六、矩阵特征值和特征向量的计算
  • 基本迭代法,QR 方法。
七、最优化方法与非线性方程迭代解法
  • 一维搜索,牛顿法,非线性最小二乘问题,非线性方程迭代解法。
八、常微分方程数值方法
  • Euler 方法,Runge-Kutta 方法,线性多步法,预估-校正格式,方程组及高阶方程数值 方法,分子动力学中数值方法,辛几何算法。
九、偏微分方程数值解法
  • 抛物型方程的差分方法,椭圆型方程的有限元方法。
十、快速算法
  • 快速Fourier变换,预处理加速技术,迭代法的磨光性质,多重网格法简介。
*十一、随机模拟方法
  • Monte Carlo方法,随机微分方程的数值解。

教材与参考书:

  1. 周铁,徐树方,张平文,李铁军,《计算方法》,清华大学出版社,2006.
  2. R.L. Burden and D. Faires, Numerical analysis, 7th edition, Thomson Learning, 2001.
  3. J. Stoer and R. Bulirsch, An introduction to numerical analysis,
    Springer-Verlag, New York, 2002.

并行与分布式计算基础

课程号:00137150
课程名称:并行与分布式计算基础
开课学期:秋季
学分:3
先修课程:计算概论,数据结构与算法,机器学习基础。
基本目的:本课程主要面向北京大学数学科学学院数据科学与大数据技术专业的三年级本科 生。通过本课程的学习,学生将对并行与分布式计算的基础理论、编程方法及其与数据科学结 合的相关技术有较为系统性的了解,从而提高学生从事大数据算法设计、编程与应用等的相关 能力。

内容提要:

  1. 预备知识:2学时
  2. 高性能计算编程与开发环境:3学时
  3. 当代高性能处理器架构:3学时
  4. 程序的性能优化基础:2学时
  5. 程序的性能优化实践:2学时
  6. 并行计算模型与框架:3学时
  7. 多线程并行编程(1):2学时
  8. 多线程并行编程(2):2学时
  9. 分布式并行编程(1):2学时
  10. 分布式并行编程(2):2 学时
  11. 大数据的分布式处理技术(1):2 学时
  12. 大数据的分布式处理技术(2):2 学时
  13. 众核处理器编程:3 学时
  14. GPU 编程基础(1):2 学时
  15. GPU 编程基础(2):2 学时
  16. GPU 与大数据:3 学时
  17. GPU 与深度学习:3 学时
  18. 若干前沿问题选讲(1):2 学时
  19. 若干前沿问题选讲(2):2 学时
  20. 课程总结与作业展示(1):2 学时
  21. 课程总结与作业展示(2):2 学时

教材与参考书:

  1. D.Kirk,W. Hwu: Programming Massively Parallel Processors: A Hands-,Morgan Kaufmann,2016.
  2. G. Hager, G.:Introduction to High Performance Computing for, CRC Press.2010

凸优化

课程号:00136660
课程名称:凸优化
开课学期:秋季
学分:
先修课程:数学分析(高等数学),高等代数(线性代数)
基本目的:随着科学与工程的发展,凸优化理论与方法的研究迅猛发展,在科学与工程计算, 数据科学,信号和图像处理,管理科学等诸多领域中得到了广泛应用。通过本课程的学习,掌握凸优化的基本概念,对偶理论,典型的几类凸优化问题的判别及其计算方法,熟悉相关计算软件。

内容提要:(本课程面向高年级本科生和研究生。)

  1. 凸优化简介,3学时
    课程简介,凸优化问题介绍
  2. 凸集,凸函数,3学时
    凸集和凸函数的定义和判别
  3. 数值代数基础,3学时
    向量,矩阵,范数,子空间,Cholesky分解,QR分解,特征值分解,奇异值分解
  4. 凸优化问题,6学时
    典型的凸优化问题,线性规划和半定规划问题
  5. 凸优化模型语言和算法软件,3学时
    模型语言:AMPL, CVX, YALMIP; 典型算法软件: SDPT3, Mosek, CPLEX, Gruobi
  6. 对偶理论,3学时
    对偶问题的转换和对偶理论
  7. 梯度法和线搜索算法,3学时
    最速下降法及其复杂度分析,线搜索算法,Barzilar-Borwein 方法
  8. 近似点梯度法,3学时
    近似点梯度法的构造和分析
  9. Nesterov加速算法,3学时
    Nesterov 加速算法的分析和应用
  10. 交替方向乘子法及其变形,6学时
    交替方向乘子法的构造,对偶方法,拆分方法
  11. 内点算法, 6 学时
    内点算法基本理论和算法
  12. 凸优化在统计,信号处理和机器学习等中的应用,3 学时
    凸优化在统计,信号处理和机器学习等中的应用
  13. 课程项目报告,6 学时
    学生分组做小课题报告

教材与参考书:

  1. Stephen Boyd and Lieven:Convex Optimization,Cambridge University Press,2004.
  2. Jorge Nocedal and Stephen Wright: Numerical Optimization, Springer,2006。
  3. 袁亚湘,孙文瑜:最优化理论与方法,科学出版社,2003.

深度学习:算法与应用

课程号:00137130
课程名称:深度学习:算法与应用
开课学期:春季
学分:3
先修课程:课程要求学生熟悉至少一门编程语言,对机器学习有基本的了解。
基本目的:(空)

内容提要:

一、预备知识

1.1 线性代数、信息论、数值分析 (3 学时)
1.2 机器学习基础 (3 学时)

二、深度学习基础

2.1 深度前馈网络 (3 学时)
2.2 深度学习中正则化技术 (3 学时)
2.3 训练深度网络的优化算法 (3 学时)
2.4 卷积网络 (3 学时)
2.5 递归网络 (3 学时)

三、应用

3.1 实现的技巧 (3 学时)
3.2 视觉计算 (6 学时)
3.3 机器翻译 (3 学时)

四、高等深度学习技术

4.1 自编码器 (3 学时)
4.2 贝叶斯方法与推理近似 (6 学时)
4.3 生成模型 (3 学时)
4.4 对抗网络 (3 学时)

教材与参考书:(自查)


强化学习:理论与算法

课程号:08408010
课程名称:强化学习:理论与算法
开课学期:春季
学分:3
先修课程:概率论,深度学习,程序设计。

内容提要:

第一章 引言(4学时)
1.1 强化学习的历史
1.2 强化学习与其它机器学习方法的关系
1.3 案例展示

第二章 马尔可夫决策过程(8学时)
2.1 Finite Horizon Problems
2.2 Infinite Horizon Problems
2.3 价值迭代
2.4 策略迭代

第三章 折扣马尔可夫决策过程(8学时)
3.1 价值评价
3.2 最优性评价
3.3 价值迭代
3.4 策略迭代

第四章 近似动态规划

第五章 近似价值函数

第六章 学习近似函数估计(8学时)

第七章 应用 (12学时)
7.1 棋类
7.2 机器人
7.3 其它

教材与参考书:

数据科学导引

课程号:04630790
课程名称:数据科学导引
开课学期:秋季
学分:3
先修课程:微积分,线性代数,概率统计。
基本目的:要求学生掌握:
(1) 数据科学的基本思想和内容
(2) 处理数据分析问题的基 本方法:数据预处理,数据探索,分类,回归,降维等;
(3) 深刻理解重要的几种机器学 习算法,包括线性回归,随机森林,支持向量机,主成分分析等
(4) 优秀的实践操作能力,使用编程语言实现机器学习算法。

内容提要:

第一节 课程介绍

介绍数据科学的发展历史、数据科学包含的内容、数据类型及对应模型、介绍数据科学中 的经典算法。

第二节 数据预处理

介绍数据预处理的基本概念和内容,重点介绍数字编码、One-Hot 编码、缺失值处理、异常值检测、数据标准化和数据离散化。

第三节 分类模型

介绍分类问题的基本概念、分类问题的评价方法、代表性的分类算法。

  • 3.1 分类问题介绍 2 学时
    • 介绍分类问题概念,分类问题的评价指标介绍,介绍基本的 K-近邻算法
  • 3.2支持向量机 2学时
    • 介绍支持向量机算法原理、原问题和对偶问题、核方法、SMO 算法 (Sequential minimal optimization)
  • 3.3 集成分类 2 学时
    • 介绍集成算法的基本概念,Bagging 和 Boosting 方法介绍,介绍随机森林算法,重点讲解 Boosting 算法的经典代表 AdaBoost 算法
第四节 聚类模型和 K-Means

介绍聚类的基本概念,聚类问题的评价指标介绍,介绍常见的聚类算法,重点讲解经典的 K-Means 算法

第五节 回归模型

介绍回归的基本概念,回归问题的评价指标,介绍线性回归和正则化的方法(LASSO, Ridge 和 Elastic net)

第六节 特征选择和模型选择

介绍特征选择的常用方法;介绍模型选择的方法,重点介绍交叉验证、模型调参的概念和方法

第七节降维

介绍降维的概念和意义,介绍常用的降维算法,重点讲解主成分分析(PCA)和线性判别 分析(LDA)

第八节 文本分析
  • 8.1 文本模型 2 学时
    • 介绍文本表示方法,TF 模型(Term Frequency)和 TF-IDF 模型、讲解文本分类中经 典的朴素贝叶斯算法(Na?ve Bayes)
  • 8.2 主题分析 2 学时
    • 介绍文本主题分析的概念和常见的主题分析模型,如 LSA(Latent Semantic Analysis), pLSA(probabilitistic Latent Semantic Analysis)和 LDA 等,重点讲解 LDA 主题分析模型(Latent Dirichlet Allocation)。
第九节 图算法与社交网络分析
  • 9.1 链接分析 2 学时
    • 介绍图分析的基本概念,介绍链接分析的经典算法 PageRank
  • 9.2 图结构分析和社区发现 2 学时
    • 介绍从图结构中进行社区发现的概念和内容,讲解社区发现的经典算法。
第十节 推荐系统

介绍推荐系统的概念,介绍基于邻域的推荐方法,基于协同过滤的推荐算法,讲解推荐系 统的评价指标(评分预测 RMSE 和 MAE,TopN 推荐中的精度和召回率,覆盖率,多样性的含义)

第十一节 神经网络和深度学习

介绍神经网络的概念和发展历史,讲解多层感知机算法和经典的后向传播算法(Back Propogation),讲解深度学习的基本原理。介绍深度学习的发展方向,常见的深度学习模型。

第十二节 大规模数据与分布式计算

介绍大规模数据处理框架 MapReduce,介绍适合批处理的大数据处理平台 Hadoop,适合机 器学习模型训练的Spark和分布式图处理平台。

教材与参考书:

  1. 欧高炎,朱占星,董斌,鄂维南,《数据科学导引》,高等教育出版社,2017 年。
  2. Kevin P. Murphy: Machine Learning:A Probabilistic Perspective, The MIT Press,2012 年。
  3. Shalev-Shwartz, Shai,and Shai:Understanding machine learning From theory to Algorithms, Cambridge University Press,2014年。

程序设计实习

课程号:04831750
课程名称:程序设计实习
开课学期:春季
学分:3
先修课程:计算概论
基本目的:教学目的和基本要求 1.掌握 C++语言的基本语法、类库和标准模板库; 2.基本 掌握枚举、递归和动态规划等基本算法思想; 3.培养学生的实际动手能力,为进一步学习其 它专业课程奠定良好的基础。

内容提要:

  1. 阅读程序练习 2课时
    程序运行中内存状态的改变
    根据程序逻辑推断计算方法
  2. 日期处理和进制转换 2 课时
    日期表示和计算的一般方法
    进制转换中的一般方法
  3. 函数指针 2课时
    函数指针的用法
    利用函数指针进行高阶计算过程抽象
  4. 高精度计算 2课时
    高精度计算的本质
    高精度加法、减法、乘法、除法
  5. 字符串处理 2课时
    字符串的表示
    C 语言中提供的字符串处理函数库
  6. 链表 2课时
    链表的定义、插入、删除
    单链表、双链表,循环链表
    链表的应用
  7. 枚举 2课时
    枚举的基本思想 使用每枚举方法解决问题的实例
  8. 递归 4课时
    递归的基本思想
    使用递归思想解决问题的实例
  9. 搜索 4 课时
    搜索的基本思想
    深度优先搜索
    广度优先搜索
  10. 动态规划 8课时
    动态规划的基本思想
    递归和动态规划之间的转换
    动态规划解决问题的实例
  11. 类和对象 6课时
    类和对象、成员变量、成员函数
    构造函数和析构函数
  12. 继承 6课时
    继承、公有继承、保护继承、私有继承
    成员的可见性
  13. 运算符重载 4课时
    可以重载的运算符
    重载为成员或者友员
  14. 多态和虚函数 6 课时
    虚函数、纯虚函数
    多态
  15. 流和文件读写 4 课时
    C++中的流和文件读写类
  16. 标准模板库 8课时
    类模板和函数模板
    容器、迭代器
    容器的分类、算法模板

教材与参考书:

  1. 李文斯,郭炜,佘华山:程序设计导引及在线实践,清华大学出版社,2007 年 10 月。
  2. Harvey M.Deitel: C++大学教程,电子工业出版社,2004 年。

更新时间记录:

  1. 第一次发现这份北大数学系的本科数学培养手册。「2024.6.28 15:35」
  2. 三个多月了,三个多月了,我慢慢的复制粘贴文本,一点一点地修改字符。「2024.9.1 14:53」
  3. 修改后首次发布。另外,北京大学这份2021年的数学本科培养手册可比清华大学2019年的培养手册详细太多了。「2024.9.14 17:24」
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值