一、选择题(单)
本题共8小题,每小题5分,共40分。在每小题给出的四个选项中。只有一项是符合题目要求的。
- 复数
z
z
z 满足
z
=
i
z = i
z=i,则复平面上表示复数
z
z
z 的点位于
A. 第一或第三象限
B. 第二或第四象限
C. 实轴
D. 虚轴 - “
tan
θ
=
3
\tan\theta=\sqrt{3}
tanθ=3”是“
sin
2
θ
=
3
2
\sin2\theta=\frac{\sqrt{3}}{2}
sin2θ=23”的
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件 - 设
a
=
3
0.5
,
b
=
4
0.4
,
c
=
5
0.3
a=3^{0.5},b=4^{0.4},c=5^{0.3}
a=30.5,b=40.4,c=50.3,则
A. a < b < c a\lt b\lt c a<b<c
B. c < b < a c\lt b\lt a c<b<a
C. c < a < b c\lt a\lt b c<a<b
D. a < c < b a\lt c\lt b a<c<b - 已知正整数
n
≥
7
n\geq7
n≥7,若
(
x
−
1
x
)
(
1
−
x
)
n
(x- \frac{1}{x})(1-x)^{n}
(x−x1)(1−x)n 的展开式中不含
x
4
x^4
x4 的项,则
n
n
n 的值为
A. 7
B. 8
C. 9
D. 10 - 从3双不同的鞋子中随机任取3只,则这3只鞋子中有两只可以配成一双的概率是
A. 2 5 \frac{2}{5} 52
B. 1 2 \frac{1}{2} 21
C. 3 5 \frac{3}{5} 53
D. 2 3 \frac{2}{3} 32 - 某圆锥母线长为2,底面半径为3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为
A. 2
B. 3 \sqrt{3} 3
C. 2 \sqrt{2} 2
D. 1 - 过抛物线
E
:
y
2
=
2
p
x
(
p
>
0
)
E:y^2=2px(p\gt0)
E:y2=2px(p>0) 焦点
F
F
F 的直线交抛物线于
A
、
B
A、B
A、B 两点,过
A
、
B
A、B
A、B 分别向
E
E
E 的准线作垂线,垂足分别为
C
、
D
C、D
C、D,若
△
A
C
F
\triangle{ACF}
△ACF 与
△
B
D
F
\triangle{BDF}
△BDF 的面积之比为4,则直线
A
B
AB
AB 的斜率为
A. ± 1 \pm1 ±1
B. ± 3 \pm\sqrt{3} ±3
C. ± 2 \pm2 ±2
D. ± 2 2 \pm2\sqrt{2} ±22 - 设函数
f
(
x
)
=
2
sin
(
ω
x
+
ϕ
)
−
1
(
ω
>
0
)
f(x) = 2\sin(\omega x + \phi) - 1 (\omega \gt 0)
f(x)=2sin(ωx+ϕ)−1(ω>0),若对于任意实数
ϕ
\phi
ϕ,
f
(
x
)
f(x)
f(x) 在区间
[
4
,
4
]
[4,4]
[4,4] 上至少有2个零点,至多有3个零点,则
ω
\omega
ω 的取值范围是
A. [ 8 3 , 16 3 ) [\frac{8}{3},\frac{16}{3}) [38,316)
B. [ 4 , 16 3 ) [4,\frac{16}{3}) [4,316)
C. [ 4 , 20 3 ) [4,\frac{20}{3}) [4,320)
D. [ 8 3 , 20 3 ) [\frac{8}{3},\frac{20}{3}) [38,320)
二、选择题(多)
本题共 4 小题,每小题 5 分,共 20 分。 在每小题给出的选项中,有多项符合题 目要求。 全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分。
- 图中矩形表示集合
U
,
A
,
B
U,A,B
U,A,B 是
U
U
U 的两个子集,则阴影部分可以表示为
A. ( ∁ U A ) ∩ B (\complement_U A)\cap B (∁UA)∩B
B. ∁ U ( A ∩ B ) \complement_U(A\cap B) ∁U(A∩B)
C. ( ∁ U ( A ∩ ( ∁ U B ) ) (\complement_U(A\cap(\complement_U B)) (∁U(A∩(∁UB))
D. ∁ A ∪ B A \complement_{A\cup B}A ∁A∪BA - 已知函数
f
(
x
)
=
{
−
x
,
x
<
0
x
2
,
x
>
0
f(x)=\begin{cases}-x,x\lt0\\x^2,x\gt0\end{cases}
f(x)={−x,x<0x2,x>0,则有
A. 存在 x 0 > 0 x_0>0 x0>0,使得 f ( x 0 ) = − x 0 f(x_0)=-x_0 f(x0)=−x0
B. 存在 x 0 < 0 x_0\lt0 x0<0,使得 f ( x 0 ) = x 0 2 f(x_0)=x_0^{2} f(x0)=x02
C. 函数 f ( − x ) f(-x) f(−x) 与 f ( x ) f(x) f(x) 的单调区间和单调性相同
D. 若 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2) 且 x 1 ≠ x 2 x_1\ne x_2 x1=x2,则 x 1 + x 2 ≤ 0 x_1+x_2\leq 0 x1+x2≤0 - 两个等差数列
a
n
{a_n}
an 和
b
n
{b_n}
bn,其公差分别为
d
1
d_1
d1 和
d
2
d_2
d2,其前
n
n
n 项和分别为
S
n
S_n
Sn 和
T
n
T_n
Tn,则下列命题中正确的是
A. 若 S n {\sqrt{S_n}} Sn 为等差数列,则 d 1 = 2 a 1 d_1=2a_1 d1=2a1
B. 若 S n + T n {S_n +T_n} Sn+Tn 为等差数列,则 d 1 + d 2 = 0 d_1+d_2 =0 d1+d2=0
C. 若 a n b n {a_nb_n} anbn 为等差数列,则 d 1 = d 2 = 0 d_1 =d_2=0 d1=d2=0
D. 若 b n ∈ N ∗ b_n\in N^{\ast} bn∈N∗ ,则 a b n {a_{b_n}} abn(注:该 b n b_n bn为下标符号) 也为等差数列,且公差为 d 1 + d 2 d_1+d_2 d1+d2 - 设函数
f
(
x
)
=
e
2
x
−
8
e
x
+
6
x
f(x)=e^{2x} -8e^{x} +6x
f(x)=e2x−8ex+6x,若曲线
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
P
(
x
0
,
f
(
x
0
)
)
P(x_0,f(x_0))
P(x0,f(x0)) 处的切线与该曲线恰有一个公共点
P
P
P,则选项中满足条件的
x
0
x_0
x0 有
A. − ln 2 -\ln2 −ln2
B. ln 2 \ln2 ln2
C. ln 4 \ln4 ln4
D. ln 5 \ln5 ln5
三、填空题
本题共 4 小题,每小题 5 分,共 20 分。
- 两个单位向量 e 1 , e 2 e_1,e_2 e1,e2 满足 ∣ e 1 ∣ = ∣ e 1 + e 2 ∣ \left|e_1 \right|= \left|e_1 +e_2\right| ∣e1∣=∣e1+e2∣,则 ∣ e 1 − e 2 ∣ = \left|e_1-e_2\right|= ∣e1−e2∣=____
- 双曲线 E : x 2 − y 2 = 1 ( a > 0 , b > 0 ) E:x_2 -y_2 =1(a\gt0,b\gt0) E:x2−y2=1(a>0,b>0) 的半焦距为 c c c,若双曲线 E E E与 圆: ( x − c ) 2 + y 2 = 9 a 2 (x-c)^2 +y^2 =9a^2 (x−c)2+y2=9a2 恰有三个公共点,则 E E E 的离心率为____
- 在一次以“二项分布的性质” 为主题的数学探究活动中,立德中学高三某小组的学生表现优异,发现的正确结论得到老师和同学的一致好评。设随机变量 X B ( n , P ) X~B(n,P) X B(n,P),记 p k = ( n k ) p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . , n p_k=\binom{n}{k}p^{k}(1-p)^{n-k},k=0,1,2,...,n pk=(kn)pk(1−p)n−k,k=0,1,2,...,n。在研究 p k p^k pk 的最大值时,小组同学发现:若 ( n + 1 ) p (n+1)p (n+1)p 为正整数,则 k = ( n + 1 ) p k = (n + 1)p k=(n+1)p 时, p k = p k − 1 p_k = p_{k-1} pk=pk−1,此时这两项概率均为最大值;若 ( n + 1 ) p (n + 1)p (n+1)p 为非整数,当 k k k 取 ( n + 1 ) p (n + 1)p (n+1)p 的整数部分,则 p k p_k pk 是唯一的最大值。以此为理论基础,有同学重复投掷一枚质地均匀的骰子并实时记录点数1出现的次数。当投掷到第20次时,记录到此时点数1出现5次,若继续再进行80次投掷试验,则当投掷到第100次时,点数1总共出现的次数为___的概率最大。
- 如图,该图展现的是一种被称为“正六角反棱柱” 的多面体,其由两个全等且平行的正六边形作为基底,侧面由12个全等的以正六边形的边为底的等腰三角形组成。若某个正六角反棱柱各棱长均为 1,则其外接球的表面积为___
四、解答题
本题共 6 小题,共 70 分。 解答应写出文字说明、证明过程或演算步骤。
- (10分)已知公比不为 1 的等比数列
{
a
n
}
\lbrace a_n \rbrace
{an},满足
a
1
+
a
3
=
5
a_1+a_3 = 5
a1+a3=5,且
a
1
a_1
a1,
a
3
a_3
a3,
a
2
a_2
a2 构成等差数列。
(I)求 { a n } \lbrace a_n \rbrace {an} 的通项公式;
(II)记 S n S_n Sn 为 { a n } \lbrace a_n \rbrace {an} 的前 n n n 项和,求 S k > 23 8 S_k \gt \frac{23}{8} Sk>823 成立的最大正整数 k k k。 - (12分)在
△
A
B
C
\triangle{ABC}
△ABC 中,它的内角
A
,
B
,
C
A,B,C
A,B,C 的对边分别为
a
,
b
,
c
a,b,c
a,b,c,且
B
=
2
π
3
,
b
=
6
B=\frac{2\pi}{3},b=\sqrt{6}
B=32π,b=6。
(I)若 cos A cos B = 2 3 \cos A\cos B=\frac{2}{3} cosAcosB=32,求 △ A B C \triangle{ABC} △ABC 的面积;
(II)试问 1 a + 1 c = 1 \frac{1}{a}+\frac{1}{c}=1 a1+c1=1 能否成立?若能成立,求此时 △ A B C \triangle{ABC} △ABC 周长;若不能成立,请说明理由。 - (12分)如图,四棱锥
P
−
A
B
C
D
P-ABCD
P−ABCD 中,
C
D
⊥
平面
P
A
D
CD\perp平面PAD
CD⊥平面PAD,
A
B
∥
C
D
,
A
B
=
1
,
C
D
=
2
AB \parallel CD,AB=1,CD=2
AB∥CD,AB=1,CD=2,
M
M
M 为棱
P
C
PC
PC 上的一点。
(I)若 B M ⊥ C D BM\perp CD BM⊥CD,证明: B M ∥ 平面 P A D BM \parallel 平面PAD BM∥平面PAD;
(II)若 P A = P D = A D = 2 PA=PD=AD=2 PA=PD=AD=2,且 P A ∥ 平面 B M D PA\parallel平面BMD PA∥平面BMD,求直线 PC 与平面 BMD 所成角的正弦值。 - (12分)有关研究表明,正确佩戴安全头盔,规范使用安全带能够将交通事故死亡风险大幅降低对保护群众生命安全具有重要作用。2020年4月,“ 一盔一带”安全守护行动在全国各地开展。行动期间,公安交管部门将加强执法管理,依法查纠摩托车和电动自行车骑乘人员不佩戴安全头盔,汽车驾乘人员不使用安全带的行为,助推养成安全习惯。该行动开展 一段时间后,某市针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1000名骑行人员中,记录其年龄和是否佩戴头盔情况,得到如下的统计图表:
(I) 估算该市电动自行车骑乘人员的 平均年龄;
(II) 根据所给数据,完成下面的列联表:
(III)根据(II) 中的列联表,判断是否有99%把握认为遵守佩戴安全头盔与年龄有关? - (12分)已知椭圆
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a\gt b\gt 0)
C:a2x2+b2y2=1(a>b>0) 的左右顶点分别为 A、B,过椭圆内点
D
(
2
3
,
0
)
D(\frac{2}{3},0)
D(32,0) 且不与x轴重合的动直线交椭圆 C于P、Q两点,当直线
P
Q
PQ
PQ 与x轴垂直时,
∣
P
D
∣
=
∣
B
D
∣
=
4
3
\left|PD\right|=\left|BD\right|=\frac{4}{3}
∣PD∣=∣BD∣=34。
(I)求椭圆C的标准方程;
(II)设直线 A P 、 A Q AP、AQ AP、AQ 和直线 l : x = t l:x=t l:x=t 分别交于点 M、N,若 M D ⊥ N D MD\perp ND MD⊥ND 恒成立,求 t 的值。 - (12分)已知函数
f
(
x
)
=
(
x
−
1
)
e
x
−
a
−
ln
x
f(x)=(x-1)e^{x-a}-\ln x
f(x)=(x−1)ex−a−lnx。
(I)当 a = 1 a=1 a=1 时,求 f ( x ) f(x) f(x) 的最小值;
(II)证明:当 0 < a ≤ 1 0\lt a\leq 1 0<a≤1 时, f ( x ) ≥ ln a f(x)\geq \ln a f(x)≥lna 恒成立。
五、更新时间记录
- 12道选择题记录完毕;「2025.2.26 19:16」
- 4道填空题收录完毕;「2025.2.27 9:34」
- 6道解答题收录完毕。「2025.2.27 11:57」