一、选择题(单)
本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 设集合
A
,
B
A,B
A,B 满足
A
∪
B
=
{
1
,
2
,
3
,
4
,
5
,
6
}
A∪B=\lbrace1,2,3,4,5,6\rbrace
A∪B={1,2,3,4,5,6},
A
∩
B
=
{
2
,
4
}
,
A
=
{
2
,
3
,
4
,
5
}
A∩B= \lbrace2,4\rbrace,A = \lbrace2,3,4,5\rbrace
A∩B={2,4},A={2,3,4,5},则
B
=
B=
B=
A. { 2 , 4 , 5 , 6 } \lbrace2,4,5,6\rbrace {2,4,5,6}
B. { 1 , 2 , 4 , 6 } \lbrace1,2,4,6\rbrace {1,2,4,6}
C. { 2 , 4 , 6 } \lbrace2,4,6\rbrace {2,4,6}
D. { 1 , 2 , 4 } \lbrace1,2,4\rbrace {1,2,4} - 复数
z
z
z 满足
∣
z
+
1
−
i
∣
=
∣
z
∣
\left|z+1-i\right|=\left|z\right|
∣z+1−i∣=∣z∣,若
z
z
z 在复平面内对应的点为
(
x
,
y
)
(x,y)
(x,y) 则
A. x − y + 1 = 0 x-y+1=0 x−y+1=0
B. x − y − 1 = 0 x-y-1=0 x−y−1=0
C. x + y + 1 = 0 x+y+1=0 x+y+1=0
D. x + y − 1 = 0 x+y-1=0 x+y−1=0 - 设
a
=
log
0.2
0.3
a=\log_{0.2}0.3
a=log0.20.3,
b
=
log
2
3
b=\log_{2}3
b=log23,
c
=
log
4
6
c=\log_{4}6
c=log46,则
A. a < b < c a\lt b\lt c a<b<c
B. b < a < c b\lt a\lt c b<a<c
C. c < a < b c\lt a\lt b c<a<b
D. a < c < b a\lt c\lt b a<c<b - 被誉为我国“宋元数学四大家”的李治对“天元术” 进行了较为全面的总结和探讨,于1248年撰写《测圆海镜》,对一元高次方程和分式方程理论研究作出了卓越贡献。我国古代用算筹记数,表示数的算筹有纵式和横式两种,如图1所示。如果要表示一个多位数字,即把各位的数字依次横列,个位数用纵式表示,且各位数的筹式要纵横相间,例如614用算筹表示出来就是“T—IIII” ,数字0通常用“O”表示。按照李治的记法,多项式方程各系数均用算筹表示,在一次项旁记一“元”字,“元”向上每层增加一次幕,向下每层减少一次幂。如图2所示表示方程为
x
3
+
336
x
2
+
4184
x
+
88320
+
72
x
=
0
x^{3}+336x^{2}+4184x+88320 + \frac{72}{x}=0
x3+336x2+4184x+88320+x72=0。根据以上信息,图3中表示的多项式方程的实根为
A. − 4 3 -\frac{4}{3} −34和 − 5 2 -\frac{5}{2} −25
B. − 5 6 -\frac{5}{6} −65和-4
C. − 5 3 -\frac{5}{3} −35和-2
D. − 20 3 -\frac{20}{3} −320和 − 1 2 -\frac{1}{2} −21 - 已知平面向量
∣
a
∣
=
3
\left|a\right|=3
∣a∣=3,
∣
b
∣
=
2
\left|b\right|=2
∣b∣=2,
a
⋅
(
a
−
b
)
=
8
a\cdot(a-b)=8
a⋅(a−b)=8,则
cos
<
a
,
b
>
=
\cos<a,b>=
cos<a,b>=
A. 1 3 \frac{1}{3} 31
B. − 6 4 -\frac{\sqrt{6}}{4} −46
C. 1 6 \frac{1}{6} 61
D. 2 3 \frac{2}{3} 32 - 一组数据由10个数组成,将其中一个数由4改为1,另一个数由6改为9,其余数不变,得到新的10个数,则新的一组数的方差相比原先一组数的方差的增加值为
A. 2
B. 3
C. 4
D. 5 - 设双曲线
x
2
a
2
−
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
\frac{x^2}{a^2}- \frac{y^2}{b^2} =1(a\gt0,b\gt0)
a2x2−b2y2=1(a>0,b>0) 的左右焦点分别为
F
1
、
F
2
F1、F2
F1、F2,以
F
1
、
F
2
F_1、F_2
F1、F2 为直径的圆与双曲线在第一象限交于点
A
A
A,直线
A
F
1
AF_1
AF1 与双曲线的另一个交点为
B
B
B,若
∣
B
F
1
∣
=
3
\left|BF_1\right|=3
∣BF1∣=3,
∣
A
F
2
∣
=
5
\left|AF_2\right|=5
∣AF2∣=5,则该双曲线的离心率为
A. 2 2 2
B. 5 3 \frac{5}{3} 35
C. 10 2 \frac{\sqrt{10}}{2} 210
D. 15 3 \frac{\sqrt{15}}{3} 315 - 在四棱锥
P
−
A
B
C
D
P-ABCD
P−ABCD 中,
D
C
→
=
3
A
B
→
\overrightarrow{DC}=3\overrightarrow{AB}
DC=3AB,过直线
A
B
AB
AB 的平面将四棱锥截成体积相等的两个部分,设该平面与棱
P
C
PC
PC 交于点
E
E
E,则
P
E
P
C
=
\frac{PE}{PC}=
PCPE=
A. 1 2 \frac{1}{2} 21
B. 2 2 \frac{\sqrt{2}}{2} 22
C. 3 2 \frac{\sqrt{3}}{2} 23
D. 2 3 \frac{2}{3} 32
二、选择题(多)
题共4小题,每小题5分,共20分。 在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
- 已知
F
F
F 为椭圆
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
\frac{x^2}{a^2}+\frac{y^2}{b^2} =1(a\gt b\gt 0)
a2x2+b2y2=1(a>b>0) 的一个焦点,
A
B
AB
AB 为该椭圆的两个顶点,若
∣
A
F
=
3
∣
\left|AF=3\right|
∣AF=3∣,
∣
B
F
=
5
∣
\left|BF=5\right|
∣BF=5∣ 则满足条件的椭圆方程为
A. x 2 4 + y 2 3 = 1 \frac{x^2}{4}+\frac{y^2}{3}=1 4x2+3y2=1
B. x 2 9 + y 2 5 = 1 \frac{x^2}{9}+\frac{y^2}{5}=1 9x2+5y2=1
C. x 2 16 + y 2 15 = 1 \frac{x^2}{16}+\frac{y^2}{15}=1 16x2+15y2=1
D. x 2 25 + y 2 21 = 1 \frac{x^2}{25}+\frac{y^2}{21}=1 25x2+21y2=1 - 已知
△
A
1
B
1
C
1
\triangle{A_1B_1C_1}
△A1B1C1 和
△
A
2
B
2
C
2
\triangle{A_2B_2C_2}
△A2B2C2 中,
∠
A
1
=
∠
A
2
=
3
0
∘
\angle{A_1}=\angle{A_2}=30^{\circ}
∠A1=∠A2=30∘,
B
1
C
1
=
B
2
C
2
=
2
B_1C_1=B_2C_2=2
B1C1=B2C2=2,若“
A
1
B
1
=
A
2
B
2
=
t
A_1B_1=A_2B_2=t
A1B1=A2B2=t”,是 “
△
A
1
B
1
C
1
\triangle{A_1B_1C_1}
△A1B1C1 和
△
A
2
B
2
C
2
\triangle{A_2B_2C_2}
△A2B2C2 全等”的充分条件,则常数 t 可以是
A. 2
B. 3
C. 4
D. 5 - 下列关于函数
f
(
x
)
=
sin
1
x
f(x)=\sin\frac{1}{x}
f(x)=sinx1 的判断正确的有
A. 值域为 [ − 1 , 1 ] [ - 1,1] [−1,1]
B. 是奇函数
C. 是区间 [ 2 π , 4 π ] [\frac{2}{\pi},\frac{4}{\pi}] [π2,π4] 上的增函数
D. 对任意正实数 t,在区间 ( 0 , t ) (0,t) (0,t) 上有无穷多个零点 - 在对具有相关关系的两个变量进行回归分析时,若两个变量不呈线性相关关系,可以
建立含两个待定参数的非线性模型,并引入中间变量将其转化为线性关系,再利用最小二乘法进行线性回归分析。下列选项为四个同学根据自己所得数据的散点图建立的非线性模型,且散点图的样本点均位于第一象限,则其中可以根据上述方法进行回归分析的模型有
A. y = c 1 x 2 + c 2 x y=c_1x^2+c_2x y=c1x2+c2x
B. y = x + c 1 x + c 2 y=\frac{x+c_1}{x+c_2} y=x+c2x+c1
C. y = c 1 + ln ( x + c 2 ) y=c_1+\ln(x+c_2) y=c1+ln(x+c2)
D. y = c 1 e x + c 2 y=c_1e^{x+c_2} y=c1ex+c2
三、填空题
本题共4小题,每小题5分,共20分。
- ( 1 − x 2 ) ( 1 + 1 x ) 6 (1-x^2)(1+\frac{1}{x})^6 (1−x2)(1+x1)6 展开式中的常数项为___
- 某圆柱的侧面展开图是面积为16的正方形,则该圆柱一个底面的面积为___
- 写出一个定义在 R 上且值域为 ( − 1 , 1 ) (-1,1) (−1,1) 的奇函数 f ( x ) = f(x)= f(x)=____
- 某班级在一次植树种花活动中负责对一片圆环区域花圃栽植鲜花,该圆环区域被等分为n个部分( n ≥ 4 n \geq 4 n≥4),每个部分从红,黄,蓝三种颜色的鲜花中选取一种进行栽植,要求相邻区域不能用同种颜色的鲜花。将总的栽植方案数用 a n a_n an 表示,则 a 4 = a_4= a4= , a n = a_n= an=。(本题第一空2分,第二空3分。)
四、解答题
本题共 6 小题,共 70 分。 解答应写出文字说明、证明过程或演算步骤。
17、(10分)在【1】
2
S
5
=
S
3
+
S
9
+
12
2S_5=S_3+S_9+12
2S5=S3+S9+12,【2】
S
7
a
4
+
a
6
+
a
7
+
a
9
=
7
3
\frac{S_7}{a_4+a_6+a_7+a_9}=\frac{7}{3}
a4+a6+a7+a9S7=37,【3】
a
5
2
−
a
3
2
a
4
2
−
a
2
2
=
=
4
7
\frac{a_5^{2}-a_3^{2}}{a_4^{2}-a_2^{2}}==\frac{4}{7}
a42−a22a52−a32==74 这三个条件中任选一个,补充在下面的问题中。
问题:已知
{
a
n
}
\lbrace a_n \rbrace
{an} 为等差数列。设其前 n 项和为
S
n
S_n
Sn,
a
1
=
13
a_1=13
a1=13,____,是否存在正整数 m,k(其中
1
≤
m
<
k
1\leq m\lt k
1≤m<k),使得
S
m
=
S
k
S_m=S_k
Sm=Sk 成立?若存在,写出 m,k 满足的关系式;若不存在,请说明理由。
18、(12分)平面凸四边形
A
B
C
D
ABCD
ABCD 中,
∠
B
A
D
=
∠
B
C
D
=
9
0
∘
\angle{BAD}=\angle{BCD}=90^{\circ}
∠BAD=∠BCD=90∘,
A
D
=
3
AD=3
AD=3,
A
B
=
4
AB=4
AB=4 。
(1)若
∠
A
B
C
=
4
5
∘
\angle{ABC}=45^{\circ}
∠ABC=45∘,求
C
D
CD
CD ;
(2)若
B
C
=
2
5
BC=2\sqrt{5}
BC=25,求
A
C
AC
AC 。
19、(12分)如图,四边形
A
B
C
D
ABCD
ABCD 是边长为
13
\sqrt{13}
13 的菱形,对角线
B
D
=
4
BD=4
BD=4,
F
F
F 为
C
D
CD
CD 的中点,
C
E
⊥
平面
B
C
D
CE\perp平面BCD
CE⊥平面BCD,
C
E
=
2
CE=2
CE=2。现沿
B
D
BD
BD 将
△
A
B
D
\triangle{ABD}
△ABD 对折至
△
A
1
B
D
\triangle{A_1BD}
△A1BD 的位置,使得平面
A
1
B
D
⊥
平面
C
B
D
A_1BD\perp平面CBD
A1BD⊥平面CBD,且点
A
1
A_1
A1 和
E
E
E 在平面同侧。
(1)证明:
A
1
F
∥
平面
B
C
E
A_1F\parallel平面BCE
A1F∥平面BCE;
(2)求二面角
A
1
−
B
F
−
E
A_1-BF-E
A1−BF−E 大小得正弦值。
20、(12分)某工厂购进一批加工设备,由于该设备自动模式运行不稳定,因此一个工作时段内会有
1
4
\frac{1}{4}
41的概率出现自动运行故障。 此时需要1名维护人员立刻将设备切换至手动操控模式,
并持续人工操作至此工作时段结束,期间该人员无法对其它设备进行维护工厂在每个工 作时段开始时将所有设备调至自动模式,若设备的自动模式出现故障而得不到人员的维护,则该设备将停止运行,且每台设备运行的状态相互独立。
(1)安排1名人员负责维护3台设备,求这3台设备能顺利运行至工作时段结束的概率;
(2)设该工厂有甲、乙两个车间。甲车间有6台设备和2名维护人员,将6台设备平均分配给2人,每名维护人员只负责维护分配给自已的3台设备;乙车间有7台设备和2名维护人员,7台设备由这2人共同负责维护。若用车间所有设备顺利运行至工作时段结束的概率来衡量生产的稳定性,试比较两个车间稳定性的高低。
21、(12分)设抛物线
E
:
y
2
=
2
p
x
(
p
>
0
)
E:y^2=2px(p \gt 0)
E:y2=2px(p>0) 的焦点为
F
F
F,过点
F
F
F 作直线
l
l
l 交抛物线
E
E
E 于
A
、
B
A、B
A、B 两点。当
l
l
l 与x轴垂直时,
△
A
O
B
\triangle{AOB}
△AOB 的面积为8,其中 O 为坐标原点。
(1)求抛物线
E
E
E 的标准方程;
(2)若
l
l
l 的斜率存在且为
k
1
k_1
k1,点
P
(
3
,
0
)
P(3,0)
P(3,0),直线
A
P
AP
AP 与
E
E
E 的另一交点为
C
C
C,直线
B
P
BP
BP 与
E
E
E 的另一交点为
D
D
D,设直线
C
D
CD
CD 的斜率为
k
2
k_2
k2,证明:
k
2
k
1
\frac{k_2}{k_1}
k1k2 为定值。
22、(12分)已知函数
f
(
x
)
=
ln
(
x
+
1
)
−
x
+
a
(
1
−
cos
x
)
f(x)=\ln(x+1)-x+a(1-\cos x)
f(x)=ln(x+1)−x+a(1−cosx)。
(1)当
a
=
0
a=0
a=0 时,求曲线
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
(
1
e
,
f
(
1
e
−
1
)
)
(\frac{1}{e},f(\frac{1}{e}-1))
(e1,f(e1−1)) 处的切线方程;
(2)若存在正实数
t
t
t,使得当
x
∈
(
−
t
,
t
)
x \in (-t,t)
x∈(−t,t) 时,有
x
f
(
x
)
≥
0
xf(x)\geq 0
xf(x)≥0 恒成立,求
a
a
a 的值。
五、更新时间记录
- 选题题收录至第6道;「2025.2.27 20:42」
- 填空题收录完毕;「2025.2.28 11:35」
- 解答题收录至第18题;「2025.2.28 11:45」
- 解答题收录完毕。「2025.2.28 16:10」