武汉市2021届高中毕业生五月供题(数学)


一、选择题(单)

本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知全集 U = { x ∈ N ∣ 0 < x < 8 } U=\lbrace x\in N|0\lt x \lt 8\rbrace U={xN∣0<x<8} A ∩ ( ∁ U B ) = { 1 , 2 } A\cap(\complement_U B)=\lbrace1,2\rbrace A(UB)={1,2} ∁ U ( A ∪ B ) = { 5 , 6 } \complement_U(A\cup B)=\lbrace5,6\rbrace U(AB)={5,6} B ∩ ( ∁ U A ) = { 4 , 7 } B\cap (\complement_U A)=\lbrace4,7\rbrace B(UA)={4,7},则 A A A 集合为
A. { 1 , 2 , 4 } \lbrace1,2,4\rbrace {1,2,4}
B. { 1 , 2 , 7 } \lbrace1,2,7\rbrace {1,2,7}
C. { 1 , 2 , 3 } \lbrace1,2,3\rbrace {1,2,3}
D. { 1 , 2 , 4 , 7 } \lbrace1,2,4,7\rbrace {1,2,4,7}

2、若复数 z z z 满足 i + z z = i + 2 \frac{i+z}{z}=i+2 zi+z=i+2,则 z z z 在复平面上对应的点位于
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限

3、已知函数 f ( x ) = { ln ⁡ x , x ≥ 1 0 , 0 ≤ x < 1 x , x < 0 f(x)=\begin{cases}\ln x,x\geq 1\\0,0\leq x\lt 1\\x,x\lt 0\end{cases} f(x)= lnx,x10,0x<1x,x<0,若 f ( 2 a − 1 ) − 1 ≤ 0 f(2a-1)-1\leq0 f(2a1)10,则实数 a 的取值范围是
A. [ e + 1 2 , + ∞ ) [\frac{e+1}{2},{+\infty}) [2e+1,+)
B. ( − ∞ , − 1 2 ) ∪ [ 0 , e + 1 2 ] (-\infty,-\frac{1}{2})\cup[0,\frac{e+1}{2}] (,21)[0,2e+1]
C. [ 0 , e + 1 2 ] [0,\frac{e+1}{2}] [0,2e+1]
D. ( − ∞ , e + 1 2 ) (-\infty,\frac{e+1}{2}) (,2e+1)

4、 △ A B C \triangle{ABC} ABC 中, A C → = 2 A D → , B C → = 3 B E → \overrightarrow{AC}=2\overrightarrow{AD},\overrightarrow{BC}=3\overrightarrow{BE} AC =2AD ,BC =3BE ,设 A C → = a \overrightarrow{AC}=a AC =a A C → = b \overrightarrow{AC}=b AC =b,则 D E → = \overrightarrow{DE}= DE =
A. 2 3 a − 1 6 b \frac{2}{3}a-\frac{1}{6}b 32a61b
B. 2 3 a + 1 6 \frac{2}{3}a+\frac{1}{6} 32a+61
C. 1 2 a + 1 6 \frac{1}{2}a+\frac{1}{6} 21a+61
D. 1 2 a − 1 6 \frac{1}{2}a-\frac{1}{6} 21a61

5、地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准:震级 M M M 用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示。里氏震级的计算公式为: M = lg ⁡ A m a x A 0 M=\lg \frac{A_{max}}{A_0} M=lgA0Amax (其中常数 A 0 A_0 A0 是距震中100公里处接收到的0级地震的地震波的最大振幅; A m a x A_{max} Amax 是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅)。 地震的能量 E E E 是指当地震发生时,以地震波的形式放出的能量。 E = 1 0 4.8 × 1 0 1.5 M E = 10^{4.8}×10^{1.5M} E=104.8×101.5M (单位:焦耳),其中 M M M 为地震震级。已知甲地地震产生的能量是乙地地震产生的能量的 1 0 3 10^3 103 倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A,则甲地地震在距震中100公里处接收到的地震波的最大振幅为
A. 2A
B. 10A
C. 100A
D. 1000A

6、A同学和B同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A同学每局获胜的概率均为 2 3 \frac{2}{3} 32 ,且每局比赛相互独立,则在A先胜一局的条件下,A最终能获胜的概率是
A. 3 4 \frac{3}{4} 43
B. 8 9 \frac{8}{9} 98
C. 7 9 \frac{7}{9} 97
D. 5 6 \frac{5}{6} 65

7、过抛物线 x 2 = 4 y x^2 =4y x2=4y 焦点 F F F 的直线交抛物线于 A , B A,B A,B两点,交 x x x 轴于 C C C 点, B F → = 2 C B → \overrightarrow{BF}=2\overrightarrow{CB} BF =2CB ,则 ∣ A F ∣ ∣ B F ∣ = \frac{\left| AF \right|}{\left| BF \right|}= BFAF=
A. 5 3 \frac{5}{3} 35
B. 8 3 \frac{8}{3} 38
C. 3 3 3
D. 10 3 \frac{10}{3} 310

8、在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N个学生( N = 100 m , m ∈ N ∗ N=100m , m\in N\ast N=100m,mN),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中40%表示喜欢该学科,其余表示不喜欢。若有99. 9%把握认为性别与是否喜欢该学科有关,则可以推测N的最小值为在这里插入图片描述
A. 400
B. 300
C. 200
D. 100


二、选择题(多)

本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。

9、已知数列 { a n } \lbrace a_n \rbrace {an} 的前 n n n 项和 S n S_n Sn S n = n 2 + a n + 1 S_n =n^2+a_n+1 Sn=n2+an+1,则
A. { a n } \lbrace a_n \rbrace {an} 是等差数列
B. { a n } \lbrace a_n \rbrace {an} 不是等差数列
C. 若 { S n } \lbrace S_n \rbrace {Sn} 是递增数列,则 a a a 的取值范围是 [ − 2 , + ∞ ) [-2,+\infty) [2,+)
D. 若 { S n } \lbrace S_n \rbrace {Sn} 是递增数列,则 a a a 的取值范围是 [ − 3 , + ∞ ) [-3,+\infty) [3,+)

10、已知函数 f ( x ) = sin ⁡ ( 2 x + π 4 ) f(x)=\sin(2x+\frac{\pi}{4}) f(x)=sin(2x+4π) ,则
A. 函数 ∣ f ( x ) ∣ \left|f(x)\right| f(x) 的最小正周期为 π \pi π
B. 直线 x = 5 8 π x=\frac{5}{8}\pi x=85π y = f ( x ) y=f(x) y=f(x) 图像的一条对称轴
C. y = f ( x ) + f ( 2 x − π 8 ) y=f(x)+f(2x-\frac{\pi}{8}) y=f(x)+f(2x8π) 的值域为 [ − 9 8 , 2 ) [-\frac{9}{8},2) [89,2)
D. 若 ω > 0 \omega\gt0 ω>0 时, f ( ω x ) f(\omega x) f(ωx) 在区间 [ π 2 ] [\frac{\pi}{2}] [2π] 上单调,则 ω \omega ω 的取值范围是 ( 0 , 1 8 ] (0,\frac{1}{8}] (0,81]

11、已知偶函数 f ( x ) f(x) f(x) 满足: f ( x + 2 ) = f ( 2 − x ) f(x + 2)=f(2-x) f(x+2)=f(2x),且当 0 ≤ x ≤ 2 0\leq x \leq 2 0x2 时, f ( x ) = 2 x − 2 f(x)=2x- 2 f(x)=2x2,则下列说法正确的是
A. − 2 ≤ x ≤ 0 -2\leq x\leq 0 2x0 时, f ( x ) = ( 1 2 ) x − 2 f(x)=(\frac{1}{2})^{x}-2 f(x)=(21)x2
B. 点 ( 1 , 0 ) (1,0) (1,0) f ( x ) f(x) f(x) 图像的一个对称中心
C. f ( x ) f(x) f(x) 在区间 [ − 10 , 10 ] [-10,10] [10,10] 上有10个零点
D. 对任意 x 1 , x 2 x_1,x_2 x1,x2,都有 ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ 2 \left|f(x_1)-f(x_2)\right|\leq2 f(x1)f(x2)2

12、 A 、 B 、 C 、 D A、B、C、D ABCD 是半径已知的某球体表面上不共面的四点,且 A B AB AB 恰为该球体的一条直径,现已知 A C AC AC C D CD CD 的长,在一般情况下,若再加入一个条件就能使四面体 A B C D ABCD ABCD 的体积有唯一值,则该条件可以是
A. C D ⊥ A B CD\perp AB CDAB
B. B D BD BD 的长
C. 二面角 C − A B − D C-AB-D CABD 的大小
D. 直线 C D CD CD 与平面 A B C ABC ABC 所成角的大小


三、填空题

本题共4小题,每小题5分,共20分。

13、某圆柱两个底面面积之和等于其侧面面积,则该圆柱底面半径与高的比值为___

14、当 x ≠ 0 x\ne 0 x=0 时,函数 f ( x ) f(x) f(x) 满足 x < f ( x ) < e x − 1 x\lt f(x)\lt e^{x}-1 x<f(x)<ex1,写出一个满足条件的函数解析式 f ( x ) = f(x)= f(x)=___

15、 ( 1 + x + 1 x ) 10 (1+x+\frac{1}{x})^{10} (1+x+x1)10 展开式的项数为____

16、已知椭圆 E : x 2 4 + y 2 3 = 1 E:\frac{x^2}{4}+\frac{y^2}{3}=1 E:4x2+3y2=1,若存在以点 T ( t , 0 ) T(t,0) T(t,0) 为圆心, r ( r > 0 ) r(r\gt 0) r(r>0) 为半径的 ⊙ T \odot T T,则该圆与椭圆 E E E 恰有两个公共点,且圆上其余各点均在椭圆内部,则 t t t 的取值范围是____

四、解答题

本题共6小题,共70分。 解答应写出文字说明、证明过程或演算步骤。、

17、(10分)在 1 ◯ A B → ⋅ A C → = 15 2 \textcircled{1} \overrightarrow{AB}\cdot\overrightarrow{AC}=\frac{15}{2} 1AB AC =215 2 ◯ 3 sin ⁡ C + cos ⁡ C = a + c b \textcircled{2}\sqrt{3}\sin C+\cos C=\frac{a+c}{b} 23 sinC+cosC=ba+c 3 ◯ S = 7 3 3 \textcircled{3}S=\frac{7\sqrt{3}}{3} 3S=373 这三个条件中任选一个,补 充在下面的问题中,并回答问题。
问题:在 △ A B C \triangle{ABC} ABC 中,内角 A , B , C A,B,C A,B,C 所对的边分别为 a , b , c , A a,b,c,A a,b,c,A 为锐角, a = 6 , b = 4 3 sin ⁡ B a=6,b=4 \sqrt{3}\sin B a=6,b=43 sinB,且____求 △ A B C \triangle{ABC} ABC 的周长。(注:如果选择多个条件分别解答,按第一个解答计分。)

18、(12分)等比数列 { a n } \lbrace a_n \rbrace {an} 中, a 1 = 3 , a 2 + a 3 = 6 a_1=3,a_2+a_3=6 a1=3,a2+a3=6
(1)求 a n a_n an
(2)设 b n = 2 n ( ∣ a n ∣ + 1 ) ( ∣ a n + 1 ∣ + 1 ) b_n=\frac{2^n}{(\left|a_n\right|+1)(\left|a_{n+1}\right|+1)} bn=(an+1)(an+1+1)2n,且 b 4 < 1 b_4\lt1 b4<1,求数列 { b n } \lbrace b_n\rbrace {bn} n n n 项和 S n S_n Sn

19、(12分)2021年,我国新型冠状病毒肺炎疫情已经得到初步控制,抗疫工作取得阶段性胜利。某市号召市民接种疫苗,提出全民“应种尽种”的口号,疫苗成了重要的防疫物资。某疫苗生产厂不断加大投人,高速生产,现对其某月内连续9天的日生产量 y i y_i yi(单位:十万支, i = 1 , 2 , . . . , 9 i = 1,2,...,9 i=1,2,...,9)数据作了初步统计,得到如图所示的散点图及一些统计量的数值:散点图
统计数值
(1)从这9天中随机选取3天,求这3天中恰好有2天的日生产量不高于三十万支的概
率;
(2)由散点图分析,样本点都集中在曲线 y = l n ( b t + a ) y=ln(bt+a) y=ln(bt+a) 的附近求 y y y 关于 t t t 的方程
y = l n ( b t + a ) y=ln(bt+a) y=ln(bt+a),并估计该厂从什么时候开始日生产量超过四十万支。(参考公式:回归方程 v ^ = b ^ u + a ^ \hat{v}=\hat{b}u+\hat{a} v^=b^u+a^ 中,斜率和截距的最小二乘估计公式为: b ^ = ∑ i = 1 n ( u i − u ˉ ) ( v i − v ˉ ) ) ∑ i = 1 n ( u i − u ˉ ) 2 = ∑ i = 1 n u i v i − n u ˉ v ˉ ∑ i = 1 n u i 2 − n u ˉ 2 \hat{b}=\frac{\displaystyle\sum_{i=1}^{n}(u_i-\bar{u})(v_i-\bar{v}))}{\displaystyle\sum_{i=1}^{n}(u_i-\bar{u})^{2}}=\frac{\displaystyle\sum_{i=1}^{n}u_iv_i-n\bar{u}\bar{v}}{\displaystyle\sum_{i=1}^{n}u_i^{2}-n\bar{u}^2} b^=i=1n(uiuˉ)2i=1n(uiuˉ)(vivˉ))=i=1nui2nuˉ2i=1nuivinuˉvˉ a = v ˉ − b u ˉ a=\bar{v}-b\bar{u} a=vˉbuˉ。参考数据: e 4 ≈ 54.6 e^4 \approx 54.6 e454.6

20、如图,四棱锥 P − A B C D P-ABCD PABCD 中, A D = 2 , A B = B C = C D = 1 , A D ∥ B C AD=2,AB=BC=CD=1,AD\parallel BC AD=2,AB=BC=CD=1,ADBC,且 P A = P C , P B = P D PA=PC,PB=PD PA=PC,PB=PD四棱锥
(1)证明: 平面 P A D ⊥ 平面 A B C D 平面PAD\perp平面ABCD 平面PAD平面ABCD
(2)求直线 P A PA PA 与平面 P B D PBD PBD 所成角的正弦值的最大值。

21、(12分)已知双曲线 E : x 2 a 2 − y 2 b 2 = 1 ( a > 0 , b > 0 ) E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a\gt0,b\gt0) E:a2x2b2y2=1(a>0,b>0) 的两条渐近线所称的锐角为 6 0 ∘ 60^{\circ} 60,且点 P ( 2 , 3 ) P(2,3) P(2,3) E E E 上的一点。
(1)求 E E E 的标准方程;
(2)设 M M M E E E 在第一象限的任一点,过 M M M 的直线与 E E E 恰有一个公共点,且分别 E E E 的两条渐近线交于点 A , B , A,B, A,B, O O O 为坐标原点,证明: △ A O B \triangle{AOB} AOB 面积为定值。

22、(12分)已知函数 f ( x ) = ( x − a ) 2 + 2 sin ⁡ x − 7 4 f(x)=(x-a)^{2}+2\sin x-\frac{7}{4} f(x)=(xa)2+2sinx47
(1)证明: f ( x ) f(x) f(x) 有唯一极值点;
(2)讨论 f ( x ) f(x) f(x) 的零点个数。


五、更新时间记录

  • 单选题8道记录完毕;「2025.3.7 13:09」
  • 多选题4道收录完毕;「2025.3.7 21:58」
  • 填空题4道收录完毕;「2025.3.7 22:14」
  • 解答题6道收录完毕;「2025.3.8 18:59」
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值