一、选择题(单)
本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集
U
=
{
x
∈
N
∣
0
<
x
<
8
}
U=\lbrace x\in N|0\lt x \lt 8\rbrace
U={x∈N∣0<x<8},
A
∩
(
∁
U
B
)
=
{
1
,
2
}
A\cap(\complement_U B)=\lbrace1,2\rbrace
A∩(∁UB)={1,2},
∁
U
(
A
∪
B
)
=
{
5
,
6
}
\complement_U(A\cup B)=\lbrace5,6\rbrace
∁U(A∪B)={5,6},
B
∩
(
∁
U
A
)
=
{
4
,
7
}
B\cap (\complement_U A)=\lbrace4,7\rbrace
B∩(∁UA)={4,7},则
A
A
A 集合为
A.
{
1
,
2
,
4
}
\lbrace1,2,4\rbrace
{1,2,4}
B.
{
1
,
2
,
7
}
\lbrace1,2,7\rbrace
{1,2,7}
C.
{
1
,
2
,
3
}
\lbrace1,2,3\rbrace
{1,2,3}
D.
{
1
,
2
,
4
,
7
}
\lbrace1,2,4,7\rbrace
{1,2,4,7}
2、若复数
z
z
z 满足
i
+
z
z
=
i
+
2
\frac{i+z}{z}=i+2
zi+z=i+2,则
z
z
z 在复平面上对应的点位于
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3、已知函数
f
(
x
)
=
{
ln
x
,
x
≥
1
0
,
0
≤
x
<
1
x
,
x
<
0
f(x)=\begin{cases}\ln x,x\geq 1\\0,0\leq x\lt 1\\x,x\lt 0\end{cases}
f(x)=⎩
⎨
⎧lnx,x≥10,0≤x<1x,x<0,若
f
(
2
a
−
1
)
−
1
≤
0
f(2a-1)-1\leq0
f(2a−1)−1≤0,则实数 a 的取值范围是
A.
[
e
+
1
2
,
+
∞
)
[\frac{e+1}{2},{+\infty})
[2e+1,+∞)
B.
(
−
∞
,
−
1
2
)
∪
[
0
,
e
+
1
2
]
(-\infty,-\frac{1}{2})\cup[0,\frac{e+1}{2}]
(−∞,−21)∪[0,2e+1]
C.
[
0
,
e
+
1
2
]
[0,\frac{e+1}{2}]
[0,2e+1]
D.
(
−
∞
,
e
+
1
2
)
(-\infty,\frac{e+1}{2})
(−∞,2e+1)
4、
△
A
B
C
\triangle{ABC}
△ABC 中,
A
C
→
=
2
A
D
→
,
B
C
→
=
3
B
E
→
\overrightarrow{AC}=2\overrightarrow{AD},\overrightarrow{BC}=3\overrightarrow{BE}
AC=2AD,BC=3BE,设
A
C
→
=
a
\overrightarrow{AC}=a
AC=a,
A
C
→
=
b
\overrightarrow{AC}=b
AC=b,则
D
E
→
=
\overrightarrow{DE}=
DE=
A.
2
3
a
−
1
6
b
\frac{2}{3}a-\frac{1}{6}b
32a−61b
B.
2
3
a
+
1
6
\frac{2}{3}a+\frac{1}{6}
32a+61
C.
1
2
a
+
1
6
\frac{1}{2}a+\frac{1}{6}
21a+61
D.
1
2
a
−
1
6
\frac{1}{2}a-\frac{1}{6}
21a−61
5、地震震级根据地震仪记录的地震波振幅来测定,一般采用里氏震级标准:震级
M
M
M 用距震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示。里氏震级的计算公式为:
M
=
lg
A
m
a
x
A
0
M=\lg \frac{A_{max}}{A_0}
M=lgA0Amax (其中常数
A
0
A_0
A0 是距震中100公里处接收到的0级地震的地震波的最大振幅;
A
m
a
x
A_{max}
Amax 是指我们关注的这次地震在距震中100公里处接收到的地震波的最大振幅)。 地震的能量
E
E
E 是指当地震发生时,以地震波的形式放出的能量。
E
=
1
0
4.8
×
1
0
1.5
M
E = 10^{4.8}×10^{1.5M}
E=104.8×101.5M (单位:焦耳),其中
M
M
M 为地震震级。已知甲地地震产生的能量是乙地地震产生的能量的
1
0
3
10^3
103 倍,若乙地地震在距震中100公里处接收到的地震波的最大振幅为A,则甲地地震在距震中100公里处接收到的地震波的最大振幅为
A. 2A
B. 10A
C. 100A
D. 1000A
6、A同学和B同学参加某市青少年围棋比赛并进入决赛,决赛采取“3局2胜”制,若A同学每局获胜的概率均为
2
3
\frac{2}{3}
32 ,且每局比赛相互独立,则在A先胜一局的条件下,A最终能获胜的概率是
A.
3
4
\frac{3}{4}
43
B.
8
9
\frac{8}{9}
98
C.
7
9
\frac{7}{9}
97
D.
5
6
\frac{5}{6}
65
7、过抛物线
x
2
=
4
y
x^2 =4y
x2=4y 焦点
F
F
F 的直线交抛物线于
A
,
B
A,B
A,B两点,交
x
x
x 轴于
C
C
C 点,
B
F
→
=
2
C
B
→
\overrightarrow{BF}=2\overrightarrow{CB}
BF=2CB,则
∣
A
F
∣
∣
B
F
∣
=
\frac{\left| AF \right|}{\left| BF \right|}=
∣BF∣∣AF∣=
A.
5
3
\frac{5}{3}
35
B.
8
3
\frac{8}{3}
38
C.
3
3
3
D.
10
3
\frac{10}{3}
310
8、在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N个学生(
N
=
100
m
,
m
∈
N
∗
N=100m , m\in N\ast
N=100m,m∈N∗),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中40%表示喜欢该学科,其余表示不喜欢。若有99. 9%把握认为性别与是否喜欢该学科有关,则可以推测N的最小值为
A. 400
B. 300
C. 200
D. 100
二、选择题(多)
本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。
9、已知数列
{
a
n
}
\lbrace a_n \rbrace
{an} 的前
n
n
n 项和
S
n
S_n
Sn,
S
n
=
n
2
+
a
n
+
1
S_n =n^2+a_n+1
Sn=n2+an+1,则
A.
{
a
n
}
\lbrace a_n \rbrace
{an} 是等差数列
B.
{
a
n
}
\lbrace a_n \rbrace
{an} 不是等差数列
C. 若
{
S
n
}
\lbrace S_n \rbrace
{Sn} 是递增数列,则
a
a
a 的取值范围是
[
−
2
,
+
∞
)
[-2,+\infty)
[−2,+∞)
D. 若
{
S
n
}
\lbrace S_n \rbrace
{Sn} 是递增数列,则
a
a
a 的取值范围是
[
−
3
,
+
∞
)
[-3,+\infty)
[−3,+∞)
10、已知函数
f
(
x
)
=
sin
(
2
x
+
π
4
)
f(x)=\sin(2x+\frac{\pi}{4})
f(x)=sin(2x+4π) ,则
A. 函数
∣
f
(
x
)
∣
\left|f(x)\right|
∣f(x)∣ 的最小正周期为
π
\pi
π
B. 直线
x
=
5
8
π
x=\frac{5}{8}\pi
x=85π 是
y
=
f
(
x
)
y=f(x)
y=f(x) 图像的一条对称轴
C.
y
=
f
(
x
)
+
f
(
2
x
−
π
8
)
y=f(x)+f(2x-\frac{\pi}{8})
y=f(x)+f(2x−8π) 的值域为
[
−
9
8
,
2
)
[-\frac{9}{8},2)
[−89,2)
D. 若
ω
>
0
\omega\gt0
ω>0 时,
f
(
ω
x
)
f(\omega x)
f(ωx) 在区间
[
π
2
]
[\frac{\pi}{2}]
[2π] 上单调,则
ω
\omega
ω 的取值范围是
(
0
,
1
8
]
(0,\frac{1}{8}]
(0,81]
11、已知偶函数
f
(
x
)
f(x)
f(x) 满足:
f
(
x
+
2
)
=
f
(
2
−
x
)
f(x + 2)=f(2-x)
f(x+2)=f(2−x),且当
0
≤
x
≤
2
0\leq x \leq 2
0≤x≤2 时,
f
(
x
)
=
2
x
−
2
f(x)=2x- 2
f(x)=2x−2,则下列说法正确的是
A.
−
2
≤
x
≤
0
-2\leq x\leq 0
−2≤x≤0 时,
f
(
x
)
=
(
1
2
)
x
−
2
f(x)=(\frac{1}{2})^{x}-2
f(x)=(21)x−2
B. 点
(
1
,
0
)
(1,0)
(1,0) 是
f
(
x
)
f(x)
f(x) 图像的一个对称中心
C.
f
(
x
)
f(x)
f(x) 在区间
[
−
10
,
10
]
[-10,10]
[−10,10] 上有10个零点
D. 对任意
x
1
,
x
2
x_1,x_2
x1,x2,都有
∣
f
(
x
1
)
−
f
(
x
2
)
∣
≤
2
\left|f(x_1)-f(x_2)\right|\leq2
∣f(x1)−f(x2)∣≤2
12、
A
、
B
、
C
、
D
A、B、C、D
A、B、C、D 是半径已知的某球体表面上不共面的四点,且
A
B
AB
AB 恰为该球体的一条直径,现已知
A
C
AC
AC 和
C
D
CD
CD 的长,在一般情况下,若再加入一个条件就能使四面体
A
B
C
D
ABCD
ABCD 的体积有唯一值,则该条件可以是
A.
C
D
⊥
A
B
CD\perp AB
CD⊥AB
B.
B
D
BD
BD 的长
C. 二面角
C
−
A
B
−
D
C-AB-D
C−AB−D 的大小
D. 直线
C
D
CD
CD 与平面
A
B
C
ABC
ABC 所成角的大小
三、填空题
本题共4小题,每小题5分,共20分。
13、某圆柱两个底面面积之和等于其侧面面积,则该圆柱底面半径与高的比值为___
14、当 x ≠ 0 x\ne 0 x=0 时,函数 f ( x ) f(x) f(x) 满足 x < f ( x ) < e x − 1 x\lt f(x)\lt e^{x}-1 x<f(x)<ex−1,写出一个满足条件的函数解析式 f ( x ) = f(x)= f(x)=___
15、 ( 1 + x + 1 x ) 10 (1+x+\frac{1}{x})^{10} (1+x+x1)10 展开式的项数为____
16、已知椭圆 E : x 2 4 + y 2 3 = 1 E:\frac{x^2}{4}+\frac{y^2}{3}=1 E:4x2+3y2=1,若存在以点 T ( t , 0 ) T(t,0) T(t,0) 为圆心, r ( r > 0 ) r(r\gt 0) r(r>0) 为半径的 ⊙ T \odot T ⊙T,则该圆与椭圆 E E E 恰有两个公共点,且圆上其余各点均在椭圆内部,则 t t t 的取值范围是____
四、解答题
本题共6小题,共70分。 解答应写出文字说明、证明过程或演算步骤。、
17、(10分)在
1
◯
A
B
→
⋅
A
C
→
=
15
2
\textcircled{1} \overrightarrow{AB}\cdot\overrightarrow{AC}=\frac{15}{2}
1◯AB⋅AC=215;
2
◯
3
sin
C
+
cos
C
=
a
+
c
b
\textcircled{2}\sqrt{3}\sin C+\cos C=\frac{a+c}{b}
2◯3sinC+cosC=ba+c;
3
◯
S
=
7
3
3
\textcircled{3}S=\frac{7\sqrt{3}}{3}
3◯S=373 这三个条件中任选一个,补 充在下面的问题中,并回答问题。
问题:在
△
A
B
C
\triangle{ABC}
△ABC 中,内角
A
,
B
,
C
A,B,C
A,B,C 所对的边分别为
a
,
b
,
c
,
A
a,b,c,A
a,b,c,A 为锐角,
a
=
6
,
b
=
4
3
sin
B
a=6,b=4 \sqrt{3}\sin B
a=6,b=43sinB,且____求
△
A
B
C
\triangle{ABC}
△ABC 的周长。(注:如果选择多个条件分别解答,按第一个解答计分。)
18、(12分)等比数列
{
a
n
}
\lbrace a_n \rbrace
{an} 中,
a
1
=
3
,
a
2
+
a
3
=
6
a_1=3,a_2+a_3=6
a1=3,a2+a3=6。
(1)求
a
n
a_n
an;
(2)设
b
n
=
2
n
(
∣
a
n
∣
+
1
)
(
∣
a
n
+
1
∣
+
1
)
b_n=\frac{2^n}{(\left|a_n\right|+1)(\left|a_{n+1}\right|+1)}
bn=(∣an∣+1)(∣an+1∣+1)2n,且
b
4
<
1
b_4\lt1
b4<1,求数列
{
b
n
}
\lbrace b_n\rbrace
{bn} 前
n
n
n 项和
S
n
S_n
Sn 。
19、(12分)2021年,我国新型冠状病毒肺炎疫情已经得到初步控制,抗疫工作取得阶段性胜利。某市号召市民接种疫苗,提出全民“应种尽种”的口号,疫苗成了重要的防疫物资。某疫苗生产厂不断加大投人,高速生产,现对其某月内连续9天的日生产量
y
i
y_i
yi(单位:十万支,
i
=
1
,
2
,
.
.
.
,
9
i = 1,2,...,9
i=1,2,...,9)数据作了初步统计,得到如图所示的散点图及一些统计量的数值:
(1)从这9天中随机选取3天,求这3天中恰好有2天的日生产量不高于三十万支的概
率;
(2)由散点图分析,样本点都集中在曲线
y
=
l
n
(
b
t
+
a
)
y=ln(bt+a)
y=ln(bt+a) 的附近求
y
y
y 关于
t
t
t 的方程
y
=
l
n
(
b
t
+
a
)
y=ln(bt+a)
y=ln(bt+a),并估计该厂从什么时候开始日生产量超过四十万支。(参考公式:回归方程
v
^
=
b
^
u
+
a
^
\hat{v}=\hat{b}u+\hat{a}
v^=b^u+a^ 中,斜率和截距的最小二乘估计公式为:
b
^
=
∑
i
=
1
n
(
u
i
−
u
ˉ
)
(
v
i
−
v
ˉ
)
)
∑
i
=
1
n
(
u
i
−
u
ˉ
)
2
=
∑
i
=
1
n
u
i
v
i
−
n
u
ˉ
v
ˉ
∑
i
=
1
n
u
i
2
−
n
u
ˉ
2
\hat{b}=\frac{\displaystyle\sum_{i=1}^{n}(u_i-\bar{u})(v_i-\bar{v}))}{\displaystyle\sum_{i=1}^{n}(u_i-\bar{u})^{2}}=\frac{\displaystyle\sum_{i=1}^{n}u_iv_i-n\bar{u}\bar{v}}{\displaystyle\sum_{i=1}^{n}u_i^{2}-n\bar{u}^2}
b^=i=1∑n(ui−uˉ)2i=1∑n(ui−uˉ)(vi−vˉ))=i=1∑nui2−nuˉ2i=1∑nuivi−nuˉvˉ,
a
=
v
ˉ
−
b
u
ˉ
a=\bar{v}-b\bar{u}
a=vˉ−buˉ。参考数据:
e
4
≈
54.6
e^4 \approx 54.6
e4≈54.6 。
20、如图,四棱锥
P
−
A
B
C
D
P-ABCD
P−ABCD 中,
A
D
=
2
,
A
B
=
B
C
=
C
D
=
1
,
A
D
∥
B
C
AD=2,AB=BC=CD=1,AD\parallel BC
AD=2,AB=BC=CD=1,AD∥BC,且
P
A
=
P
C
,
P
B
=
P
D
PA=PC,PB=PD
PA=PC,PB=PD 。
(1)证明:
平面
P
A
D
⊥
平面
A
B
C
D
平面PAD\perp平面ABCD
平面PAD⊥平面ABCD;
(2)求直线
P
A
PA
PA 与平面
P
B
D
PBD
PBD 所成角的正弦值的最大值。
21、(12分)已知双曲线
E
:
x
2
a
2
−
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a\gt0,b\gt0)
E:a2x2−b2y2=1(a>0,b>0) 的两条渐近线所称的锐角为
6
0
∘
60^{\circ}
60∘,且点
P
(
2
,
3
)
P(2,3)
P(2,3) 为
E
E
E 上的一点。
(1)求
E
E
E 的标准方程;
(2)设
M
M
M 为
E
E
E 在第一象限的任一点,过
M
M
M 的直线与
E
E
E 恰有一个公共点,且分别
E
E
E 的两条渐近线交于点
A
,
B
,
A,B,
A,B, 设
O
O
O 为坐标原点,证明:
△
A
O
B
\triangle{AOB}
△AOB 面积为定值。
22、(12分)已知函数
f
(
x
)
=
(
x
−
a
)
2
+
2
sin
x
−
7
4
f(x)=(x-a)^{2}+2\sin x-\frac{7}{4}
f(x)=(x−a)2+2sinx−47。
(1)证明:
f
(
x
)
f(x)
f(x) 有唯一极值点;
(2)讨论
f
(
x
)
f(x)
f(x) 的零点个数。
五、更新时间记录
- 单选题8道记录完毕;「2025.3.7 13:09」
- 多选题4道收录完毕;「2025.3.7 21:58」
- 填空题4道收录完毕;「2025.3.7 22:14」
- 解答题6道收录完毕;「2025.3.8 18:59」