1、已知正整数 x、y、zx、y、zx、y、z 满足 x+y+z=2025x+y+z=2025x+y+z=2025 ,x2y+y2z+z2x=xy2+yz2+zx2x^2y+y^2z+z^2x=xy^2+yz^2+zx^2x2y+y2z+z2x=xy2+yz2+zx2,则 x、y、zx、y、zx、y、z 共有 ___ 组解。
2、在数 1、2、3⋯20251、2、3\cdots20251、2、3⋯2025 中,既不是 666 的倍数,又不是 999 的倍数的数共有 ___ 个。
3、已知 x1,x2x_1,x_2x1,x2 满足 x12−2x1x2+2x2x=2x_1^2-2x_1x_2+2x_2^x=2x12−2x1x2+2x2x=2,则当 x12x_1^2x12 最大时,∣x1+x2∣\left|x_1+x_2\right|∣x1+x2∣ 的值为 ___ 。
4、如图,等边三角形 ABCABCABC 的边长为 9,点 D、E、FD、E、FD、E、F 在三角形 ABCABCABC 边上,等边三角形 DEFDEFDEF 的边长为 7,则三角形 DBEDBEDBE 的内切圆半径为 ___ 。
5、如图,⊙o\odot o⊙o 的半径为 1,OFOFOF 垂直于直径 BDBDBD,EEE 为弧 DFDFDF 上一点,直线 FEFEFE 与直线 BDBDBD 交于点 CCC,过 CCC 作 BDBDBD 垂线,交 BEBEBE 延长线于点 AAA,若 ACACAC 长为 3\sqrt{3}3,则 CD=CD=CD= ___ 。
6、在矩阵 ABCDABCDABCD 中,AB=4,BC=8AB=4,BC=8AB=4,BC=8,EEE 为 BCBCBC 边中点,连接 AEAEAE,PPP 为 AEAEAE 上动点,FFF 为 PDPDPD 中点,则 2BF+CF2BF+CF2BF+CF 的最小值为 ___ 。
7、如图,正方形 ABCDABCDABCD 边长为 aaa,BCBCBC 上有一点 EEE,将 △DCE\triangle{DCE}△DCE 沿 DEDEDE 翻折得到 △DFE\triangle{DFE}△DFE,延长 EFEFEF 交 ABABAB 于 GGG,过 AAA 作 AH⊥DEAH \perp DEAH⊥DE 于点 HHH。已知 AH:HD:AD=5:2:3AH:HD:AD=\sqrt{5}:2:3AH:HD:AD=5:2:3,则 GEGEGE 长为 ___ 。
8、如图,四边形 ABCDABCDABCD 为菱形,对角线交于点 EEE,△GFB\triangle{GFB}△GFB 与 △BEC\triangle{BEC}△BEC 关于 BBB 点中心对称,已知 BD=8BD=8BD=8 ,AC=10AC=10AC=10,则 GDGDGD 的长为 ___ 。
9、已知 x+y=1x+y=1x+y=1,x3+y3=4x^3+y^3=4x3+y3=4,则 x4+y4=x^4+y^4=x4+y4= ___ 。
10、如图,已知 ∠BAC=30∘,∠BOC=120∘,BO=CO=2,AC=6\angle{BAC}=30^{\circ},\angle{BOC}=120^{\circ},BO=CO=2,AC=6∠BAC=30∘,∠BOC=120∘,BO=CO=2,AC=6,求 AO=AO=AO= ___ 。(备注:因为此题数据回忆与原题有所出入,所以提供给一个一般化问题:BO=CO=a,AC=bBO=CO=a,AC=bBO=CO=a,AC=b,求 AOAOAO 。)
11、如图,已知 ∠BAC=∠BDC=60∘,∠BCD=98∘,∠ABC=52∘,AB=a,BC=b,CD=c,AD=d\angle{BAC}=\angle{BDC}=60^{\circ},\angle{BCD}=98^{\circ},\angle{ABC}=52^{\circ},AB=a,BC=b,CD=c,AD=d∠BAC=∠BDC=60∘,∠BCD=98∘,∠ABC=52∘,AB=a,BC=b,CD=c,AD=d,则 S四边形ABCD=S_{四边形ABCD}=S四边形ABCD= ___ 。
12、如图,已知函数 y=2x2y=2x^2y=2x2 与函数 y=−ax2+bxy=-ax^2+bxy=−ax2+bx 的交点为 y=−ax2+bxy=-ax^2+bxy=−ax2+bx 的顶点,阴影部分的面积为 2,则 a=a=a= ___ ,b=b=b= ___ 。
13、已知二次函数 y=x2−2x2cy=x^2-2x_2cy=x2−2x2c,当 −2<x<2-2\lt x \lt 2−2<x<2 时有且只有一点 (x,y)(x,y)(x,y) 使得 x+y=6x+y=6x+y=6,那 ccc 的取值范围为 ____ 。
14、已知 ax2+bx+c>0ax^2+bx+c\gt0ax2+bx+c>0 的解集为 −1<x<5-1\lt x\lt 5−1<x<5 ,写出 a、b、ca、b、ca、b、c 满足的条件 ____。
15、已知 y=4x(x>0)y=\frac{4}{x}(x\gt0)y=x4(x>0) 的图像右平移 1 个单位,向下平移 a 个单位后,将 xxx 轴下方翻折至 xxx 轴上方,再将翻折后的右半支绕点 AAA 逆时针旋转 90∘90^{\circ}90∘ 后与左半支重合,a=a=a=___ 。
16、如图,AB=4AB=4AB=4,AD⊥ABAD \perp ABAD⊥AB,BC⊥ABBC \perp ABBC⊥AB,AD=BCAD=BCAD=BC,BH⊥CDBH \perp CDBH⊥CD,ABABAB 与 CDCDCD 交于点 EEE,则 sin∠BAH\sin\angle{BAH}sin∠BAH 可能是 ()(多选)
A. 12\frac{1}{2}21
B. 13\frac{1}{3}31
C. 14\frac{1}{4}41
D. 15\frac{1}{5}51
17、关于 xxx 的不等式 (a2−4a+3)x2+(a−1)x+1>0(a^2-4a+3)x^2+(a-1)x+1 \gt 0(a2−4a+3)x2+(a−1)x+1>0 恒成立,求 aaa 的范围 ____ 。
18、x,yx,yx,y 为整数,xy−3x+2y=9xy-3x+2y=9xy−3x+2y=9,求 xyxyxy 可取的值是 ___ 。
19、求 y=(x−1)2+2y=(x-1)^2+2y=(x−1)2+2 的图像沿着直线 y=4y=4y=4 翻折后的图像对应的解析式是 ___ 。
20、函数 y=3x2+6x+3y=3x^2+6x+3y=3x2+6x+3 的图像如何平移,能与 y=3x2y=3x^2y=3x2 的函数图像重合。
21、一学校共有200人,其中参加物理竞赛的有 120 人,参加化学竞赛的有 80 人,两种都不参加的有 20 人,则在学校中随机抽取一人,两科竞赛都参加的概率为( A )
A. 110\frac{1}{10}101 B. 115\frac{1}{15}151 C. 19\frac{1}{9}91 D. 120\frac{1}{20}201
22、如图,sin∠ACB\sin\angle{ACB}sin∠ACB 的值为 ____ 。
23、如图,在圆 OOO 中,ACACAC 为直径,BDBDBD 在圆 OOO 上,BC=AB=5BC=AB=5BC=AB=5,CFCFCF 平分 ∠ACD\angle{ACD}∠ACD,则()
A. BF>BABF \gt BABF>BA
B. (AD)2+(DC)2=(BD)2(AD)^2+(DC)^2=(BD)^2(AD)2+(DC)2=(BD)2
C. AD+DCAD+DCAD+DC 的最大值为 10
D. 以上答案都不对
24、已知 a+b+c=0a+b+c=0a+b+c=0,abc=−16abc=-16abc=−16,则 a、b、ca、b、ca、b、c 中的最小值的最大值为 ____ 。
P.S.博主于2025年3月16日13点33分敲录完毕。