2025年西安交通大学少年班招生考试初试数学试题(初中组)

1、已知正整数 x、y、zx、y、zxyz 满足 x+y+z=2025x+y+z=2025x+y+z=2025x2y+y2z+z2x=xy2+yz2+zx2x^2y+y^2z+z^2x=xy^2+yz^2+zx^2x2y+y2z+z2x=xy2+yz2+zx2,则 x、y、zx、y、zxyz 共有 ___ 组解。

2、在数 1、2、3⋯20251、2、3\cdots20251232025 中,既不是 666 的倍数,又不是 999 的倍数的数共有 ___ 个。

3、已知 x1,x2x_1,x_2x1,x2 满足 x12−2x1x2+2x2x=2x_1^2-2x_1x_2+2x_2^x=2x122x1x2+2x2x=2,则当 x12x_1^2x12 最大时,∣x1+x2∣\left|x_1+x_2\right|x1+x2 的值为 ___ 。

4、如图,等边三角形 ABCABCABC 的边长为 9,点 D、E、FD、E、FDEF 在三角形 ABCABCABC 边上,等边三角形 DEFDEFDEF 的边长为 7,则三角形 DBEDBEDBE 的内切圆半径为 ___ 。第4题

5、如图,⊙o\odot oo 的半径为 1,OFOFOF 垂直于直径 BDBDBDEEE 为弧 DFDFDF 上一点,直线 FEFEFE 与直线 BDBDBD 交于点 CCC,过 CCCBDBDBD 垂线,交 BEBEBE 延长线于点 AAA,若 ACACAC 长为 3\sqrt{3}3,则 CD=CD=CD= ___ 。第5题

6、在矩阵 ABCDABCDABCD 中,AB=4,BC=8AB=4,BC=8AB=4,BC=8EEEBCBCBC 边中点,连接 AEAEAEPPPAEAEAE 上动点,FFFPDPDPD 中点,则 2BF+CF2BF+CF2BF+CF 的最小值为 ___ 。第6题

7、如图,正方形 ABCDABCDABCD 边长为 aaaBCBCBC 上有一点 EEE,将 △DCE\triangle{DCE}DCE 沿 DEDEDE 翻折得到 △DFE\triangle{DFE}DFE,延长 EFEFEFABABABGGG,过 AAAAH⊥DEAH \perp DEAHDE 于点 HHH。已知 AH:HD:AD=5:2:3AH:HD:AD=\sqrt{5}:2:3AH:HD:AD=5:2:3,则 GEGEGE 长为 ___ 。第7题

8、如图,四边形 ABCDABCDABCD 为菱形,对角线交于点 EEE△GFB\triangle{GFB}GFB△BEC\triangle{BEC}BEC 关于 BBB 点中心对称,已知 BD=8BD=8BD=8AC=10AC=10AC=10,则 GDGDGD 的长为 ___ 。题8

9、已知 x+y=1x+y=1x+y=1x3+y3=4x^3+y^3=4x3+y3=4,则 x4+y4=x^4+y^4=x4+y4= ___ 。

10、如图,已知 ∠BAC=30∘,∠BOC=120∘,BO=CO=2,AC=6\angle{BAC}=30^{\circ},\angle{BOC}=120^{\circ},BO=CO=2,AC=6BAC=30,BOC=120,BO=CO=2,AC=6,求 AO=AO=AO= ___ 。(备注:因为此题数据回忆与原题有所出入,所以提供给一个一般化问题:BO=CO=a,AC=bBO=CO=a,AC=bBO=CO=a,AC=b,求 AOAOAO 。)题10

11、如图,已知 ∠BAC=∠BDC=60∘,∠BCD=98∘,∠ABC=52∘,AB=a,BC=b,CD=c,AD=d\angle{BAC}=\angle{BDC}=60^{\circ},\angle{BCD}=98^{\circ},\angle{ABC}=52^{\circ},AB=a,BC=b,CD=c,AD=dBAC=BDC=60,BCD=98,ABC=52,AB=a,BC=b,CD=c,AD=d,则 S四边形ABCD=S_{四边形ABCD}=S四边形ABCD= ___ 。题11

12、如图,已知函数 y=2x2y=2x^2y=2x2 与函数 y=−ax2+bxy=-ax^2+bxy=ax2+bx 的交点为 y=−ax2+bxy=-ax^2+bxy=ax2+bx 的顶点,阴影部分的面积为 2,则 a=a=a= ___ ,b=b=b= ___ 。题12

13、已知二次函数 y=x2−2x2cy=x^2-2x_2cy=x22x2c,当 −2<x<2-2\lt x \lt 22<x<2 时有且只有一点 (x,y)(x,y)(x,y) 使得 x+y=6x+y=6x+y=6,那 ccc 的取值范围为 ____ 。

14、已知 ax2+bx+c>0ax^2+bx+c\gt0ax2+bx+c>0 的解集为 −1<x<5-1\lt x\lt 51<x<5 ,写出 a、b、ca、b、cabc 满足的条件 ____。

15、已知 y=4x(x>0)y=\frac{4}{x}(x\gt0)y=x4(x>0) 的图像右平移 1 个单位,向下平移 a 个单位后,将 xxx 轴下方翻折至 xxx 轴上方,再将翻折后的右半支绕点 AAA 逆时针旋转 90∘90^{\circ}90 后与左半支重合,a=a=a=___ 。

16、如图,AB=4AB=4AB=4AD⊥ABAD \perp ABADABBC⊥ABBC \perp ABBCABAD=BCAD=BCAD=BCBH⊥CDBH \perp CDBHCDABABABCDCDCD 交于点 EEE,则 sin⁡∠BAH\sin\angle{BAH}sinBAH 可能是 ()(多选)
A. 12\frac{1}{2}21
B. 13\frac{1}{3}31
C. 14\frac{1}{4}41
D. 15\frac{1}{5}51题16

17、关于 xxx 的不等式 (a2−4a+3)x2+(a−1)x+1>0(a^2-4a+3)x^2+(a-1)x+1 \gt 0(a24a+3)x2+(a1)x+1>0 恒成立,求 aaa 的范围 ____ 。

18、x,yx,yx,y 为整数,xy−3x+2y=9xy-3x+2y=9xy3x+2y=9,求 xyxyxy 可取的值是 ___ 。

19、求 y=(x−1)2+2y=(x-1)^2+2y=(x1)2+2 的图像沿着直线 y=4y=4y=4 翻折后的图像对应的解析式是 ___ 。

20、函数 y=3x2+6x+3y=3x^2+6x+3y=3x2+6x+3 的图像如何平移,能与 y=3x2y=3x^2y=3x2 的函数图像重合。

21、一学校共有200人,其中参加物理竞赛的有 120 人,参加化学竞赛的有 80 人,两种都不参加的有 20 人,则在学校中随机抽取一人,两科竞赛都参加的概率为( A )
A. 110\frac{1}{10}101 B. 115\frac{1}{15}151 C. 19\frac{1}{9}91 D. 120\frac{1}{20}201

22、如图,sin⁡∠ACB\sin\angle{ACB}sinACB 的值为 ____ 。题22

23、如图,在圆 OOO 中,ACACAC 为直径,BDBDBD 在圆 OOO 上,BC=AB=5BC=AB=5BC=AB=5CFCFCF 平分 ∠ACD\angle{ACD}ACD,则()
A. BF>BABF \gt BABF>BA
B. (AD)2+(DC)2=(BD)2(AD)^2+(DC)^2=(BD)^2(AD)2+(DC)2=(BD)2
C. AD+DCAD+DCAD+DC 的最大值为 10
D. 以上答案都不对题23

24、已知 a+b+c=0a+b+c=0a+b+c=0abc=−16abc=-16abc=16,则 a、b、ca、b、cabc 中的最小值的最大值为 ____ 。


P.S.博主于2025年3月16日13点33分敲录完毕。

资源下载链接为: https://pan.quark.cn/s/790f7ffa6527 在一维运动场景中,小车从初始位置 x=-100 出发,目标是到达 x=0 的位置,位置坐标 x 作为受控对象,通过增量式 PID 控制算法调节小车的运动状态。 系统采用的位置迭代公式为 x (k)=x (k-1)+v (k-1) dt,其中 dt 为仿真过程中的恒定时间间隔,因此速度 v 成为主要的调节量。通过调节速度参数,实现对小车位置的精确控制,最终生成位置 - 时间曲线的仿真结果。 在参数调节实验中,比例调节系数 Kp 的影响十分显著。从仿真曲线可以清晰观察到,当增大 Kp 值时,系统的响应速度明显加快,小车能够更快地收敛到目标位置,缩短了稳定时间。这表明比例调节在加快系统响应方面发挥着关键作用,适当增大比例系数可有效提升系统的动态性能。 积分调节系数 Ki 的调节则呈现出不同的特性。实验数据显示,当增大 Ki 值时,系统运动过程中的波动幅度明显增大,位置曲线出现更剧烈的震荡。但与此同时,小车位置的变化速率也有所提高,在动态调整过程中能够更快地接近目标值。这说明积分调节虽然会增加系统的波动性,但对加快位置变化过程具有积极作用。 通过一系列参数调试实验,清晰展现了比例系数和积分系数在增量式 PID 控制系统中的不同影响规律,为优化控制效果提供了直观的参考依据。合理匹配 Kp 和 Ki 参数,能够在保证系统稳定性的同时,兼顾响应速度和调节精度,实现小车位置的高效控制。
资源下载链接为: https://pan.quark.cn/s/ce816c032bcc 在大四完成毕业设计期间,我需要使用 MQSim 仿真器进行相关研究。但在使用过程中发现,网上很难找到带有中文注释的版本,自己钻研了几个礼拜后仍觉得理解起来比较困难。因此,我结合自己的使用体验,对 MQSim 做了一些简单的中文注释,并将其上传分享。 需要说明的是,由于毕业设计仅涉及到仿真器的部分功能,所以目前只对实际用到的几个模块添加了注释,像 SATA、底层存储等未涉及的部分暂未进行注释处理。 在阅读源码时,其实不必过于纠结每一个方法的执行过程。MQSim 中有很多方法从命名上就能清晰了解其功能,重点关注核心逻辑即可。 为了方便大家快速上手,建议在阅读源码前先查看项目中的 “概要.md” 文件。这个 markdown 文件对项目结构和核心模块做了梳理说明,使用 Typora 软件打开可以获得更好的阅读体验,能更清晰地看到排版和格式。 需要强调的是,这个项目没有对原代码做任何功能性修改,所有的代码逻辑都保持原汁原味,只是在关键位置加入了少量中文注释,帮助大家更好地理解代码含义。希望这些注释能为同样需要使用 MQSim 的同学提供一些便利,减少初期理解代码的困难。如果在使用过程中发现有需要补充说明的地方,也欢迎大家一起交流完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值