1、已知正整数 x 、 y 、 z x、y、z x、y、z 满足 x + y + z = 2025 x+y+z=2025 x+y+z=2025 , x 2 y + y 2 z + z 2 x = x y 2 + y z 2 + z x 2 x^2y+y^2z+z^2x=xy^2+yz^2+zx^2 x2y+y2z+z2x=xy2+yz2+zx2,则 x 、 y 、 z x、y、z x、y、z 共有 ___ 组解。
2、在数 1 、 2 、 3 ⋯ 2025 1、2、3\cdots2025 1、2、3⋯2025 中,既不是 6 6 6 的倍数,又不是 9 9 9 的倍数的数共有 ___ 个。
3、已知 x 1 , x 2 x_1,x_2 x1,x2 满足 x 1 2 − 2 x 1 x 2 + 2 x 2 x = 2 x_1^2-2x_1x_2+2x_2^x=2 x12−2x1x2+2x2x=2,则当 x 1 2 x_1^2 x12 最大时, ∣ x 1 + x 2 ∣ \left|x_1+x_2\right| ∣x1+x2∣ 的值为 ___ 。
4、如图,等边三角形
A
B
C
ABC
ABC 的边长为 9,点
D
、
E
、
F
D、E、F
D、E、F 在三角形
A
B
C
ABC
ABC 边上,等边三角形
D
E
F
DEF
DEF 的边长为 7,则三角形
D
B
E
DBE
DBE 的内切圆半径为 ___ 。
5、如图,
⊙
o
\odot o
⊙o 的半径为 1,
O
F
OF
OF 垂直于直径
B
D
BD
BD,
E
E
E 为弧
D
F
DF
DF 上一点,直线
F
E
FE
FE 与直线
B
D
BD
BD 交于点
C
C
C,过
C
C
C 作
B
D
BD
BD 垂线,交
B
E
BE
BE 延长线于点
A
A
A,若
A
C
AC
AC 长为
3
\sqrt{3}
3,则
C
D
=
CD=
CD= ___ 。
6、在矩阵
A
B
C
D
ABCD
ABCD 中,
A
B
=
4
,
B
C
=
8
AB=4,BC=8
AB=4,BC=8,
E
E
E 为
B
C
BC
BC 边中点,连接
A
E
AE
AE,
P
P
P 为
A
E
AE
AE 上动点,
F
F
F 为
P
D
PD
PD 中点,则
2
B
F
+
C
F
2BF+CF
2BF+CF 的最小值为 ___ 。
7、如图,正方形
A
B
C
D
ABCD
ABCD 边长为
a
a
a,
B
C
BC
BC 上有一点
E
E
E,将
△
D
C
E
\triangle{DCE}
△DCE 沿
D
E
DE
DE 翻折得到
△
D
F
E
\triangle{DFE}
△DFE,延长
E
F
EF
EF 交
A
B
AB
AB 于
G
G
G,过
A
A
A 作
A
H
⊥
D
E
AH \perp DE
AH⊥DE 于点
H
H
H。已知
A
H
:
H
D
:
A
D
=
5
:
2
:
3
AH:HD:AD=\sqrt{5}:2:3
AH:HD:AD=5:2:3,则
G
E
GE
GE 长为 ___ 。
8、如图,四边形
A
B
C
D
ABCD
ABCD 为菱形,对角线交于点
E
E
E,
△
G
F
B
\triangle{GFB}
△GFB 与
△
B
E
C
\triangle{BEC}
△BEC 关于
B
B
B 点中心对称,已知
B
D
=
8
BD=8
BD=8 ,
A
C
=
10
AC=10
AC=10,则
G
D
GD
GD 的长为 ___ 。
9、已知 x + y = 1 x+y=1 x+y=1, x 3 + y 3 = 4 x^3+y^3=4 x3+y3=4,则 x 4 + y 4 = x^4+y^4= x4+y4= ___ 。
10、如图,已知
∠
B
A
C
=
3
0
∘
,
∠
B
O
C
=
12
0
∘
,
B
O
=
C
O
=
2
,
A
C
=
6
\angle{BAC}=30^{\circ},\angle{BOC}=120^{\circ},BO=CO=2,AC=6
∠BAC=30∘,∠BOC=120∘,BO=CO=2,AC=6,求
A
O
=
AO=
AO= ___ 。(备注:因为此题数据回忆与原题有所出入,所以提供给一个一般化问题:
B
O
=
C
O
=
a
,
A
C
=
b
BO=CO=a,AC=b
BO=CO=a,AC=b,求
A
O
AO
AO 。)
11、如图,已知
∠
B
A
C
=
∠
B
D
C
=
6
0
∘
,
∠
B
C
D
=
9
8
∘
,
∠
A
B
C
=
5
2
∘
,
A
B
=
a
,
B
C
=
b
,
C
D
=
c
,
A
D
=
d
\angle{BAC}=\angle{BDC}=60^{\circ},\angle{BCD}=98^{\circ},\angle{ABC}=52^{\circ},AB=a,BC=b,CD=c,AD=d
∠BAC=∠BDC=60∘,∠BCD=98∘,∠ABC=52∘,AB=a,BC=b,CD=c,AD=d,则
S
四边形
A
B
C
D
=
S_{四边形ABCD}=
S四边形ABCD= ___ 。
12、如图,已知函数
y
=
2
x
2
y=2x^2
y=2x2 与函数
y
=
−
a
x
2
+
b
x
y=-ax^2+bx
y=−ax2+bx 的交点为
y
=
−
a
x
2
+
b
x
y=-ax^2+bx
y=−ax2+bx 的顶点,阴影部分的面积为 2,则
a
=
a=
a= ___ ,
b
=
b=
b= ___ 。
13、已知二次函数 y = x 2 − 2 x 2 c y=x^2-2x_2c y=x2−2x2c,当 − 2 < x < 2 -2\lt x \lt 2 −2<x<2 时有且只有一点 ( x , y ) (x,y) (x,y) 使得 x + y = 6 x+y=6 x+y=6,那 c c c 的取值范围为 ____ 。
14、已知 a x 2 + b x + c > 0 ax^2+bx+c\gt0 ax2+bx+c>0 的解集为 − 1 < x < 5 -1\lt x\lt 5 −1<x<5 ,写出 a 、 b 、 c a、b、c a、b、c 满足的条件 ____。
15、已知 y = 4 x ( x > 0 ) y=\frac{4}{x}(x\gt0) y=x4(x>0) 的图像右平移 1 个单位,向下平移 a 个单位后,将 x x x 轴下方翻折至 x x x 轴上方,再将翻折后的右半支绕点 A A A 逆时针旋转 9 0 ∘ 90^{\circ} 90∘ 后与左半支重合, a = a= a=___ 。
16、如图,
A
B
=
4
AB=4
AB=4,
A
D
⊥
A
B
AD \perp AB
AD⊥AB,
B
C
⊥
A
B
BC \perp AB
BC⊥AB,
A
D
=
B
C
AD=BC
AD=BC,
B
H
⊥
C
D
BH \perp CD
BH⊥CD,
A
B
AB
AB 与
C
D
CD
CD 交于点
E
E
E,则
sin
∠
B
A
H
\sin\angle{BAH}
sin∠BAH 可能是 ()(多选)
A.
1
2
\frac{1}{2}
21
B.
1
3
\frac{1}{3}
31
C.
1
4
\frac{1}{4}
41
D.
1
5
\frac{1}{5}
51
17、关于 x x x 的不等式 ( a 2 − 4 a + 3 ) x 2 + ( a − 1 ) x + 1 > 0 (a^2-4a+3)x^2+(a-1)x+1 \gt 0 (a2−4a+3)x2+(a−1)x+1>0 恒成立,求 a a a 的范围 ____ 。
18、 x , y x,y x,y 为整数, x y − 3 x + 2 y = 9 xy-3x+2y=9 xy−3x+2y=9,求 x y xy xy 可取的值是 ___ 。
19、求 y = ( x − 1 ) 2 + 2 y=(x-1)^2+2 y=(x−1)2+2 的图像沿着直线 y = 4 y=4 y=4 翻折后的图像对应的解析式是 ___ 。
20、函数 y = 3 x 2 + 6 x + 3 y=3x^2+6x+3 y=3x2+6x+3 的图像如何平移,能与 y = 3 x 2 y=3x^2 y=3x2 的函数图像重合。
21、一学校共有200人,其中参加物理竞赛的有 120 人,参加化学竞赛的有 80 人,两种都不参加的有 20 人,则在学校中随机抽取一人,两科竞赛都参加的概率为( A )
A.
1
10
\frac{1}{10}
101 B.
1
15
\frac{1}{15}
151 C.
1
9
\frac{1}{9}
91 D.
1
20
\frac{1}{20}
201
22、如图,
sin
∠
A
C
B
\sin\angle{ACB}
sin∠ACB 的值为 ____ 。
23、如图,在圆
O
O
O 中,
A
C
AC
AC 为直径,
B
D
BD
BD 在圆
O
O
O 上,
B
C
=
A
B
=
5
BC=AB=5
BC=AB=5,
C
F
CF
CF 平分
∠
A
C
D
\angle{ACD}
∠ACD,则()
A.
B
F
>
B
A
BF \gt BA
BF>BA
B.
(
A
D
)
2
+
(
D
C
)
2
=
(
B
D
)
2
(AD)^2+(DC)^2=(BD)^2
(AD)2+(DC)2=(BD)2
C.
A
D
+
D
C
AD+DC
AD+DC 的最大值为 10
D. 以上答案都不对
24、已知 a + b + c = 0 a+b+c=0 a+b+c=0, a b c = − 16 abc=-16 abc=−16,则 a 、 b 、 c a、b、c a、b、c 中的最小值的最大值为 ____ 。
P.S.博主于2025年3月16日13点33分敲录完毕。