机器学习面试问题

本文深入探讨了正则化在机器学习中防止过拟合的作用,解释了L1和L2正则化的数学原理及其差异。L1正则化通过引入稀疏性,有助于特征选择,而L2正则化通过惩罚权重平方和来降低模型复杂度。理解这些概念对于优化模型性能至关重要。
摘要由CSDN通过智能技术生成

机器学习面试问题

正则化
1.如何防止模型的过拟合?
正则化
2.为什么正则化能够防止过拟合?
模型的复杂度 和 参数的个数
参数个数减少----->模型的复杂度就下降了
3.数学角度讲一下?

4.为什么L1正则化具有稀疏性?
or 为什么L1正则能进行一个特征选择?

什么是过拟合 欠拟合?
欠拟合: 模型太过于简单,不能较好的拟合样本。
过拟合:模型过于复杂

如何防止过拟合?
增加 L1 L2正则化
L1和L2正则化区别?
L1: |W| = |W1|+|W2|+…|Wn|
L2:|W| = |W1平方|+|W2平方|+…|Wn平方|

模型的复杂度 和 参数向量有关
参数越多——>复杂度越高
参数越少——>复杂度越低

W->0 使得某些参数的个数下降———》进行特征选择
L1具有稀疏性

L2正则化举例
在这里插入图片描述
求偏导 对 Wi 和 λ 求

约束W。 |W1平方|+|W2平方|+…|Wn平方|<=n

在这里插入图片描述
|W1|+|W2|+…|Wn| <= m
在这里插入图片描述

不等式约束的最优化问题
在这里插入图片描述
KKT
拉格朗日
在这里插入图片描述
构建拉格朗日函数

在这里插入图片描述

正则化—隐含条件—>带约束条件------>限制模型复杂度

等值线

等值线上的每个点的损失值是相同的。
在这里插入图片描述
L1为什么相对L2正则更具有稀疏性

左边 是L1正则化,是正方形,可以和更多的目标函数相交的情况大
右边 是L2正则化,是圆形,更多是和目标函数相交在最外层的边缘上
左边L1正则化     右边L2正则化
L1稀疏性 角度1:W=0 进行特征选择
角度2: 贝叶斯 最大后验概率估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值