机器学习-线性回归-预测房价
导入我们需要的模块包
import pandas as pd
import numpy as np
import matplotlib as plt
import seaborn
读取数据,查看数据
header = None表示不设置,表格的首字段。
# 读取训练集
data_train = pd.read_csv('kc_train.csv',header = None)
#给数据标列名
data_train.columns =["销售日期","销售价格","卧室数","浴室数","房屋面积","停车面积","楼层数","房屋评分",
"建筑面积","地下室面积","建筑年份","修复年份","纬度","经度"]
# 读取测试集
t = pd.read_csv('kc_test.csv')
训练集
测试集
关于数据的介绍
数据分为两个csv文件,一个是用来训练的数据集。
另一个是用来检测数据,是通过 训练出来的数据集 进行 房价的预测,对比真实的结果。
将我们需要的目标值,进行提取
target=data_train