线性回归-预测房价(机器学习)

机器学习-线性回归-预测房价

导入我们需要的模块包

import pandas as pd
import numpy as np 
import matplotlib as plt
import seaborn

读取数据,查看数据

header = None表示不设置,表格的首字段。

# 读取训练集
data_train = pd.read_csv('kc_train.csv',header = None)
#给数据标列名
data_train.columns =["销售日期","销售价格","卧室数","浴室数","房屋面积","停车面积","楼层数","房屋评分",
                     "建筑面积","地下室面积","建筑年份","修复年份","纬度","经度"]  
# 读取测试集
t = pd.read_csv('kc_test.csv')           

训练集
在这里插入图片描述
测试集
在这里插入图片描述

关于数据的介绍
数据分为两个csv文件,一个是用来训练的数据集。
另一个是用来检测数据,是通过 训练出来的数据集 进行 房价的预测,对比真实的结果。

将我们需要的目标值,进行提取

target=data_train
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值