torch.unique()和np.unique()的转换

torch.unique()功能说明见链接

np.unique()功能说明见链接

torch.unique(A, return_inverse=True)np.unique(A, return_inverse=True)是等价的

这里想补充一点差异,

a, indices = np.unique(A, return_index=True)   # 返回新列表元素在旧列表中的位置(下标)

这个功能torch.unique()是没有的,因此考虑另一种实现方式:

def unique(x, dim=0):
    unique, inverse, counts = torch.unique(x, dim=dim, 
        sorted=True, return_inverse=True, return_counts=True)
    decimals = torch.arange(inverse.numel(), device=inverse.device) / inverse.numel()
    inv_sorted = (inverse+decimals).argsort()
    tot_counts = torch.cat((counts.new_zeros(1), counts.cumsum(dim=0)))[:-1]
    index = inv_sorted[tot_counts]
    index = index.sort().values
    return unique, inverse, counts, index

github有专门讨论这个问题的
参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值