医学图像分割---UNet(Pytorch)2021-06-19

本文介绍了如何利用Pytorch实现UNet模型进行医学图像分割,提供了详细的github链接供读者查阅和训练网络。对于关注医学图像分割和深度学习的学者,这是一个有价值的交流资源。
摘要由CSDN通过智能技术生成

医学图像分割—UNet(Pytorch)

github链接(欢迎多多star)修改文件路径就可以直接训练网络

有医学图像分割,图像分割研究兴趣的同学,欢迎交流!

import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F


class DoubleConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(DoubleConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True)
        )

    def forward(self, input):
        return self.conv(input)


class
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值