B站视频指路
【手把手带你做毕设yolo】这可能是全网最全的一集YOLO目标检测实战项目串烧大杂烩!30分钟全程干货带你速览应用!看这一个视频就够啦!预告片,正片顺序你们来定
Q 2500050191
B站 熬夜冲浪冠军
闲鱼 认真专注开卷
TB 深度学习星球
提供付费 咨询 辅导 代劳等服务
个人精力有限,提供知识付费,免费部分为爱发电不被绑架。
一、YOLOv5目标检测 pyqt5 GUI
简介:该项目基于YOLO目标检测算法,使用pyqt5制作GUI实现本地交互。支持上传图片检测,摄像头实时检测以及视频文件检测等功能,支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
二、YOLOv5单目测距 pyqt5 GUI
简介:该项目基于YOLO目标检测算法与单目相机模拟,使用pyqt5制作GUI实现本地交互。支持上传图片检测,摄像头实时检测以及视频文件检测功能。并且支持IoU、conf等实时调整,左下角提供是否保存结果到本地选项,显示检测结果的种类与对应数目。此外,支持显示距离显示,并且根据自定义的距离阈值给出过近预警提示。如图中小于25m有会车风险预警,距离超过25m认为安全距离较为安全。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
三、YOLOv5双目测距三维坐标呈现
简介:该项目基于YOLO目标检测算法与双目相机模拟,实现目标的检测与三维坐标展示。双目相机需要根据实际双目相机进行标定(这里只展示逻辑,标定工作因相机制宜)。支持测量得到距离目标的距离,并且得到目标的三维坐标(x,y,z)。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
四、YOLOv5车辆行人重识别
简介:该项目基于YOLO目标检测算法,实现目标的重识别。支持在视频中互动选中框选需要重试别的目标,在之后的重识别过程中能够重识别到目标不误判。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。这里给出车辆和猫的示例。
五、YOLOv5危险区域检测预警
简介:该项目基于YOLO目标检测算法,实现危险区域检测预警。包含危险区域内不规范佩戴严重警告,危险区域外进行距离测量,若距离较近,未正确佩戴会进行二级风险提示,距离在安全范围外则佩戴与否均视为安全。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
六、YOLOv5目标检测 交互页面
简介:该项目基于YOLO目标检测算法,实现web低代码交互。可以选择图片进行检测,调节iou,conf等大小。此外,还支持数据预置,即使不上传图片也会有参考图片预置其中,方便使用者进行验证跑通。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
七、YOLOv5密集人流距离监测
简介:该项目基于YOLO目标检测算法,实现人流量监控与统计,绘制运动轨迹与显示距离。当周围身边阈值内出现他人时认为过近,不符合安全距离,too close预警,安全距离如常说的一米线外则安全safe。常用于需要人与人之间保持距离等场景,不可过近。支持任意数据集经过yolov5训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
八、YOLOv8目标检测 交互页面
简介:该项目基于YOLO目标检测算法,实现页面的交互识别。支持模型选择,模型大小选择,置信度调节,图片检测,视频检测等。一站式低代码的完成页面交互,支持任意数据集经过yolov8训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
九、YOLOv8目标检测 pyside6 GUI
简介:该项目基于YOLO目标检测算法,实现页面的交互识别。支持模型选择,跟踪车辆,统计目标总量,并且绘制对应轨迹图。并且支持显示的开关,分析结果的保存等功能。支持任意数据集经过yolov8训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
十、YOLOv8目标检测与车牌识别
简介:该项目基于YOLO目标检测算法,并追加实现车牌识别功能,提供交互界面,支持图片视频摄像头等输入。通过检测到车牌后进一步识别车牌达到图中效果。支持任意数据集经过yolov8训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
十一、YOLOv8跟踪 实例分割 速度估算 距离估算
简介:该项目基于YOLO目标检测算法,并追加实现分割跟踪或速度估测等一系列扩展功能。其中,测速功能思想使用前后帧物体位置变化进行估算,在完全俯视角度具有较好使用体验。支持任意数据集经过yolov8训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
十二、YOLOv8模拟人眼跟踪
简介:该项目基于YOLO目标检测算法,可模拟人眼的观察精度,为计算机提供识别和精确定位物体的能力。这一功能使计算机能够辨别并聚焦于特定物体,就像人眼从特定视角观察细节一样。支持任意数据集经过yolov8训练后的自定义检测目标模型模型直接更换,其余yolo系列更换需要作微调适配。
十三、YOLOv8 俯卧撑 引体向上 计数
简介:该项目基于YOLO目标检测算法,通过实时准确地跟踪关键的身体地标和关节,增强了运动评估功能。这项技术可提供有关锻炼姿势的即时反馈、跟踪锻炼程序并测量性能指标,从而优化用户和教练的训练课程。
十四、YOLO 热力图
简介:该项目基于YOLO目标检测算法,将复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种易于理解且引人入胜的方法。
十五、YOLO 边缘端设备移植
简介:这一方面主要包括安卓端NCNN,国产芯片RK3588、算能1684X等,将训练完成的YOLO转换到对应边缘端适配的模型,如rknn,bmodel等等,进行边缘端推理。这一部分具体内容会在对应专题展开,请移步后续对应专题下浏览。
十六、YOLO ONNX Springboot
简介:通过export为ONNX,可以进一步更平滑的为十五中所提及的转换做好准备。此外由于ONNX的通用性,我们还可以将其平滑放入业务中,以java为例,后端通常使用主流的Springboot框架,这里支持平滑嵌入,实现图片的检测功能,具体介绍可看B站速览。
十七、YOLO极致轻量化 44KB
简介:极致轻量化模型,压缩后大小仅有44KB。在一些特殊要求的嵌入式端适配。
十八、商业化解决方案与未完待续的后续
商业化解决方案包括推拉流编解码,docker打包镜像部署,各类中间件实现业务,此部分涉及各商单内容不进行展开,仅作交流记录。
后续计划:更新边缘端专栏,更新模型魔改改进专栏。
提供辅导教学代劳等服务,全部打包有优惠。
遇到小问题可在下方评论区留言,尽可能都会回复!