CoreNLP实现情感分类,保姆教学

本文详细介绍了如何在Java环境中下载和配置CoreNLP,重点在于如何处理中文情感分析,包括下载对应版本的中文模型,启动服务,发送HTTP请求到服务端进行情感分类,并提示注意中文模型版本的兼容性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网上的corenlp教程通篇一律的都是词性标注,句法分析,分词等,几乎没有关于情感分析的教程,经过探索,把自己总结的完整经验分享给大家!

1.下载jdk

因为CoreNLP是用java编写的,运行需要java环境,下载地址为https://www.oracle.com/cn/java/technologies/downloads/#jdk21-windowsicon-default.png?t=N7T8https://www.oracle.com/cn/java/technologies/downloads/#jdk21-windows,我这里下载的是jdk21。

2.下载并设置CoreNLP

进入CoreNLP官网:https://stanfordnlp.github.io/CoreNLP/icon-default.png?t=N7T8https://stanfordnlp.github.io/CoreNLP/我这里下载的是4.5.6版本,因为模型默认的是英文版本,如果需要处理中文的话还需要下载对应的中文模型。如下图所示:

3.将中文的jar包移动到文件夹CoreNLP的根目录

将第二步骤下载的中文模型jar包移动到CoreNLP的根目录中。如图所示。

4.启动服务

命令行进入CoreNLP的根目录,

例如我的CoreNLP根目录: E:\jiedan\stanford-corenlp-4.5.6\stanford-corenlp-4.5.6>

然后执行命令启动服务:java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 4454

其中端口4454是自己设置的,只要不和主机的其他端口所冲突就可以。

5.向服务端发送请求,完成情感分类等需求

我这里使用的是requests库发送http请求。具体代码如下::

import requests

#服务端地址
corenlp_url = 'http://localhost:4454/?properties={"annotators":"sentiment","outputFormat":"json"}'

def analyze_sentiment(text):
     data = text.encode('utf-8')
    # 发送 POST 请求
    response = requests.post(corenlp_url, data=data, headers={'Connection': 'close'})
    # 解析响应
    if response.status_code == 200:
        json_response = response.json()
        # 进行情感分类
        sentiment = json_response['sentences'][0]['sentiment']
        return sentiment
    else:
        print("Error:", response.status_code)
        return None

运行代码:

if __name__ == "__main__":
    text = "今天吃的午饭很香!。"
    sentiment = analyze_sentiment(text)
    print("情感分析结果:", sentiment)

6.结果

注意:注意中文模型的版本兼容问题,如果出现情感分类错误问题,考虑中文模型的版本问题。

### Appium 从入门到精通教程 #### 了解Appium及其特点 Appium是一个开源的移动端自动化测试框架,支持测试原生、混合以及移动端Web项目[^1]。此工具不仅能够用于iOS和Android应用的测试,还兼容Firefox OS的应用程序测试工作。值得注意的是,作为一款跨平台工具,Appium可以在OS X、Windows及Linux桌面环境中部署使用。 #### 安装配置Appium环境 对于希望快速启动并运行的人来说,可以选择安装图形界面版Appium Desktop,在官方网站下载对应系统的版本即可完成安装过程[^2]。另一方面,偏好命令行操作者可以通过Node.js包管理器npm全局安装Appium命令行工具(``npm install -g appium``),这可能涉及到网络代理设置来确保顺利下载所需资源文件。 ```bash npm install -g appium ``` #### 创建第一个测试会话 当一切准备就绪后,通过点击Appium GUI中的「Start New Session」按钮创建新的测试会话,进入详细的配置页面设定待测设备与应用程序的相关参数信息[^3]。此时可以根据具体需求调整各项选项直至满足预期条件为止。 #### 掌握元素定位技巧 为了有效地编写自动化脚本,掌握多种方式去准确定位UI组件至关重要。常见的方法包括但不限于ID、Class名称、XPath路径表达式等。例如利用`find_element_by_id()`函数基于唯一标识符查找特定控件实例[^5]: ```python element = driver.find_element_by_id('com.example.app:id/button') ``` #### 实施单元测试验证逻辑 最后一步则是引入unittest库来进行断言处理,从而确认各个功能模块的行为表现是否符合设计初衷。借助assert语句可以方便地比较期望值同实际结果之间的差异情况,进而判断是否存在潜在缺陷问题等待修复优化。 ```python import unittest class TestExample(unittest.TestCase): def test_example(self): self.assertEqual(element.text, 'Expected Text') if __name__ == '__main__': unittest.main() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值