马尔科夫过程前导——几何随机变量

前言

后面打算写马尔科夫过程,这里单独开一节来解释几何随机变量,方便理解其背后的物理含义。

伯努利分布

在一次实验中,实验结果只有成功和失败两种可能,其中成功的概率为 p p p,失败的概率为 1 − p 1-p 1p,这种分布称为伯努利分布,相应的概率质量函数为:
P ( X ) = { p  if  X = 1 1 − p  if  X = 0 P(X) = \begin{cases}p & \text { if } X=1 \\ 1-p & \text { if } X=0\end{cases} P(X)={p1p if X=1 if X=0

二项分布

二项分布是伯努利分布的扩展,进行 n n n次独立重复的伯努利试验,其中成功次数为 k k k次的概率可以用如下的概率质量函数来表示:
P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k)=C_n^k p^k(1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
上式可以简记为 X ∽ B ( n , p ) X\backsim B(n,p) XB(n,p)

几何随机变量

在二项分布中,如果随机变量 X X X表示直到最后一次才成功,则相应的概率质量函数应该为:
P ( X = n ) = p ( 1 − p ) n − 1 P(X=n)=p(1-p)^{n-1} P(X=n)=p(1p)n1
这里 n n n仍然表示独立重复实验的次数,可以看出,几何随机变量和二项分布定义下的随机变量的区别在于随机变量所表示的意义不同。几何随机变量计算的是直到最后一次才成功的概率,而原始的随机变量则计算的是在 n n n次实验中成功 k k k次的概率,即使是对于同一个 n n n,因为不同成功次数会有不同的取值,而几何随机变量只会有一个取值。

举一个例子

假设现在你要去收银台结账,此时你的前面有两个人正在排队,你需要等这两个人结账之后才能结账,而每个人因为购买的东西多少不同,收银员的心情可能会变化,所以你不知道需要等多久,假设当你排到队尾时所在的时刻为 t 0 t_0 t0,在 t 4 t_4 t4时刻第一个人结账走了,在 t 6 t_6 t6时刻第二个人结账走了。如下图所示:
在这里插入图片描述
定义:每位顾客从开始排队到离开时所经历的时间间隔 n n n是一个具有常数参数 p p p几何随机变量。也就是说,对每位顾客来说,从他加入队伍的那一刻开始计算,到结账离开时的每个时刻内,一直都是 1 − p 1-p 1p,只有在最后离开的那个时刻对应的是 p p p,为什么要这样表示?因为事先其实是不知道这个人离开的时刻的,但是可以根据给出的每个时刻走或留的概率估算在任意时刻结账(离开)的概率。这个例子在后文的马尔科夫过程中会用到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值