Utilizing Knowledge Graph and Student Testing Behavior Data for Personalized Exercise Recommendation

论文笔记_《Utilizing Knowledge Graph and Student Testing Behavior Data for Personalized Exercise Recommendation》

利用知识图谱和学生测试行为数据进行个性化的练习推荐

摘要

在本文中,尝试利用学生的学习行为和知识点之间的先决条件来提高个性化练习推荐的有效性。通过一个实例,证实了个性化练习推荐算法在推荐精度和差异性方面的有效性。

关键词:知识图谱、个性化推荐系统、智能教学系统

1 引言

传统的习题分配方式将同一组习题交给不同的学生,忽略了这些学生在学习状态上的差异。学习成绩好的学生会发现指定的练习对他们的进一步学习毫无用处,而学习水平低的学生会发现指定的练习对他们来说太难,从而失去学习兴趣。

在个性化练习推荐领域,主要有两种方法:协同过滤和基于学习状态的方法。协同过滤通过考虑具有相似品味的学生的偏好向学生推荐练习,没有考虑这些学生在学习状态方面的差异。基于学习状态的推荐技术根据学生最近的学习状态(例如,学生对不同知识点的掌握程度)推荐练习,从而在推荐中获得更好的性能。然而,大多数基于学习状态的推荐技术没有利用知识点之间的结构来进行推荐。

在本文中,提出利用知识点之间的先决条件关系来发现学生的前提难解知识点,并推荐与该前提难解知识点的练习,再推荐后续难解知识点相关的练习。

通过建立基于教科书和外部知识库(比如维基百科)的知识图谱,获取知识点之间的先决关系。知识图谱中的每个知识点都由学生对该知识点的掌握程度进行加权,该知识点是根据学生在线考试期间的考试行为计算的。因此,学生有一个独有的加权知识图(WKG),该图捕捉了知识点之间的先决条件依赖关系和学生的学习状态。

推荐算法遵循两个推荐原则:
1)首先推荐一个与先决知识点对应的练习;
2) 在原则1的前提下,对于两个知识点,首先推荐掌握程度较低的知识点对应的练习。

2 相关工作

2.1知识图谱

知识图通常基于从外部知识库(如YAGO和Wikipedia)中提取的实体和实体之间的关系来构建。然而,大多数知识图的构造技术只关注于一般实体关系的提取,例如“is-a”关系和“part-of”关系。近年来,概念之间的前提关系越来越受到研究者的关注,因为前提关系反映了学习过程中合理的学习顺序。例如,在关系数据库理论中,第二范式(2NF)是第三范式(3NF)的先决知识,因此在学习3NF之前必须掌握2NF。在本文中,利用知识点之间的先决条件依赖关系来确定推荐给学生的练习以及练习的推荐顺序。

2.2教育推荐技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值