又 3 个 AI 股票量化开源神器,绝了。

逛逛之前写过一篇介绍 AI 股票量化交易的开源项目,目前已经有 5W+ 人阅读,获得 5000+ 的转发。

本篇文章继续,再将 GitHub 上量化交易相关的开源项目进行搜罗整理,分享给大家。它们是:

1. 股票 AI 操盘手

2. 本地量化交易解决方案

3. 支持实时交易的量化回测框架


01

股票 AI 操盘手

GitHub 斩获 Star 数:2,900

这个叫做 AI 量化交易操盘手的开源项目,目前在 GitHub 上获得了 3K 的 Star。

可以把他理解成用 AI 帮你炒股的一站式工具箱,从学习、模拟到实盘,这个开源项目都有对应章节讲解,相当于教小白和股民搞一个 AI 炒股助手。

看上面截图,是这个开源项目核心内容,自带股票知识库和实战案例,像炒股入门手册一样教你基础知识。

同事还能模拟训练,包括传统方法:比如均线策略、KDJ 指标,同时还包括 AI 量化策略,通过机器学习/深度学习算法找到隐藏到背后的规律。

开源地址:https://github.com/charliedream1/ai_quant_trade

02

本地量化交易方案

GitHub 斩获 Star 数:8,700

QUANTAXIS 是一个本地量化交易的解决方案,支持任务调度、分布式部署,国内很多投资者和量化开发者都在使用,目前在 GitHub 上已经获得了 8.7K 的 Star。

这个开源量化金融策略框架,集成了数据获取、清洗存储、分析回测、可视化及交易复盘全流程,支持多市场(股票、期货、期权、外汇等)和多语言协作。

为中小型团队提供了全流程本地化解决方案,并具备活跃的开发者社区和持续更新的开源生态。

开源地址:https://github.com/yutiansut/QUANTAXIS

03

量化交易回测框架

GitHub 斩获 Star 数:17,100

Backtrader 这个框架在 GitHub 上获得了 17K 的 Star,这是一个基于 Python 的开源量化交易回测框架,功能丰富、灵活易用。

这个框架的关注点在策略回测和实盘交易,使用这个框架你能对接 CSV、数据库等数据源或者对接一些实时交易的接口(Interactive Brokers、Oanda 等)进行策略回测和实盘交易。

这样你就能把精力放在交易策略逻辑上,而不是底层基础建设上了。提供直观的 API 设计,用户可通过编写策略类快速实现交易逻辑。

image

非常给力啊。

这个开源项目要配合下面这个学习开源笔记,这个笔记是使用中文详细整理的 Backtrader 教材。

系统性介绍了这个框架的特性、策略构建、数据结构、回测交易等,彻底掌握量化神器的使用方法。

开源地址:https://github.com/mementum/backtrader
教材:https://www.backtrader.com/home/helloalgotrading/
教程:https://github.com/jrothschild33/learn_backtrader

04

点击下方卡片,关注我

这个公众号历史发布过很多有趣的开源项目,如果你懒得翻文章一个个找,你直接关注微信公众号:逛逛 GitHub ,后台对话聊天就行了:

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值