损失函数|交叉熵损失函数

1. 图像分类任务

我们希望根据图片动物的轮廓、颜色等特征,来预测动物的类别,有三种可预测类别:猫、狗、猪。假设我们当前有两个模型(参数不同),这两个模型都是通过sigmoid/softmax的方式得到对于每个预测结果的概率值:

模型1

预测真实是否正确
0.3 0.3 0.40 0 1 (猪)正确
0.3 0.4 0.30 1 0 (狗)正确
0.1 0.2 0.71 0 0 (猫)错误

模型1对于样本1和样本2以非常微弱的优势判断正确,对于样本3的判断则彻底错误。

模型2

预测真实是否正确
0.1 0.2 0.70 0 1 (猪)正确
0.1 0.7 0.20 1 0 (狗)正确
0.3 0.4 0.31 0 0 (猫)错误

模型2对于样本1和样本2判断非常准确,对于样本3判断错误,但是相对来说没有错得太离谱。

好了,有了模型之后,我们需要通过定义损失函数来判断模型在样本上的表现了,那么我们可以定义哪些损失函数呢?

1.1 Classification Error(分类错误率)

最为直接的损失函数定义为: 

模型1:classdication error=1/3

 

模型2: classfication error=1/3

 

我们知道,模型1模型2虽然都是预测错了1个,但是相对来说模型2表现得更好,因为模型二对正确类别的预测概率更高。损失函数值照理来说应该更小,但是,很遗憾的是, 只根classfocation error 并不能判断出来,所以这种损失函数虽然好理解,但表现不太好。

1.2 Mean Squared Error (均方误差)

均方误差损失也是一种比较常见的损失函数,其定义为: 

模型1:

对所有样本的loss求平均:

模型2:

对所有样本的loss求平均:

我们发现,MSE能够判断出来模型2优于模型1,那为什么不采样这种损失函数呢?主要原因是在分类问题中,使用sigmoid/softmx得到概率,配合MSE损失函数时,采用梯度下降法进行学习时,会出现模型一开始训练时,学习速率非常慢的情况。具体请详细了解MSE。

有了上面的直观分析,我们可以清楚的看到,对于分类问题的损失函数来说,分类错误率和均方误差损失都不是很好的损失函数,下面我们来看一下交叉熵损失函数的表现情况。

1.3 Cross Entropy Loss Function(交叉熵损失函数)

1.3.1 表达式

(1) 二分类

在二分的情况下,模型最后需要预测的结果只有两种情况,对于每个类别我们的预测得到的概率为 p和1-p,则表达式为:

yi=0或1,表示i的lable,正或负样本

 pi表示i为正样本的概率

(2) 多分类

多分类的情况实际上就是对二分类的扩展:

其中:
M是样本的数量;

yic是指,如果i的类别等于c,则取1,否则取0;

pic是指,i类别等于c的概率。

现在我们利用这个表达式计算上面例子中的损失函数值:

模型1

对所有样本的loss求平均:

模型2:

对所有样本的loss求平均:

上述计算可以使用python的sklearn库

from sklearn.metrics import log_loss 
y_true = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] 
y_pred_1 = [[0.3, 0.3, 0.4], [0.3, 0.4, 0.3], [0.1, 0.2, 0.7]] 
y_pred_2 = [[0.1, 0.2, 0.7], [0.1, 0.7, 0.2], [0.3, 0.4, 0.3]] 
print(log_loss(y_true, y_pred_1)) 
print(log_loss(y_true, y_pred_2)) 
____________ 
1.3783888522474517 
0.6391075640678003 

可以发现,交叉熵损失函数可以捕捉到模型1模型2预测效果的差异。

2. 函数性质

可以看出,该函数是凸函数,求导时能够得到全局最优值。

3. 学习过程

交叉熵损失函数经常用于分类问题中,特别是在神经网络做分类问题时,也经常使用交叉熵作为损失函数,此外,由于交叉熵涉及到计算每个类别的概率,所以交叉熵几乎每次都和sigmoid(或softmax)函数一起出现。

我们用神经网络最后一层输出的情况,来看一眼整个模型预测、获得损失和学习的流程:

  1. 神经网络最后一层得到每个类别的得分scores(也叫logits)
  2. 该得分经过sigmoid(或softmax)函数获得概率输出;
  3. 模型预测的类别概率输出与真实类别的one hot形式进行交叉熵损失函数的计算。

学习任务分为二分类和多分类情况,我们分别讨论这两种情况的学习过程。

3.1 二分类情况

二分类交叉熵损失函数学习过程

如上图所示,求导过程可分成三个子过程,即拆成三项偏导的乘积:

3.1.1 计算第一项: 

-log的底数为e,或者写作ln()。

3.1.2 计算第二项: 

这一项要计算的是sigmoid函数对于score的导数,我们先回顾一下sigmoid函数和分数求导的公式:

 带入得到

3.1.3 计算第三项: 

一般来说,scores是输入的线性函数作用的结果,所以有:

3.1.4 计算结果 

可以看到,我们得到了一个非常漂亮的结果,所以,使用交叉熵损失函数,不仅可以很好的衡量模型的效果,又可以很容易的的进行求导计算。

3.2 多分类情况

多分类交叉熵损失函数学习过程

如上图所示,求导过程可以分为三个子过程:

3.2.1 计算第一项: 

不失一般性,我们可以假设 yi=1

 

3.2.2 计算第二项: 

这一项要计算的是softmax函数对于得分的导数,我们先回顾一下softmax函数和分数求导的公式:

 求导,这时候存在两种情况:

情况1: 

则第二项的求导式子,可以写成:

求导后得

情况2: 

此时 sic这一项只在分母中存在,求导后得:

3.2.3 计算第三项: 

一般来说,scores是输入的线性函数作用的结果,所以有:

3.2.4 计算结果 

情况1: c=k

情况2: c!=k

不失一般性,我们上述假设样本的真实类别为k

 ,则有:yik=1,yck=0.c!=k。

我们求导时,对不同情况带入 y的值后,得到了一致的表达式,如果采用向量化的形式,那么导数就不用再分情况写了,统一成:

可以看出,交叉熵损失函数对于二分类和多分类求导时,采用向量化的形式后,求导结果的形式是一致的。

4. 优缺点

4.1 优点

在用梯度下降法做参数更新的时候,模型学习的速度取决于两个值:一、学习率;二、偏导值。其中,学习率是我们需要设置的超参数,所以我们重点关注偏导值。从上面的式子中,我们发现,偏导值的大小取决于 xi和  ,我们重点关注后者,后者的大小值反映了我们模型的错误程度,该值越大,说明模型效果越差,但是该值越大同时也会使得偏导值越大,从而模型学习速度更快。所以,使用逻辑函数得到概率,并结合交叉熵当损失函数时,在模型效果差的时候学习速度比较快,在模型效果好的时候学习速度变慢。

4.2 缺点

Deng [4]在2019年提出了ArcFace Loss,并在论文里说了Softmax Loss的两个缺点:1、随着分类数目的增大,分类层的线性变化矩阵参数也随着增大;2、对于封闭集分类问题,学习到的特征是可分离的,但对于开放集人脸识别问题,所学特征却没有足够的区分性。对于人脸识别问题,首先人脸数目(对应分类数目)是很多的,而且会不断有新的人脸进来,不是一个封闭集分类问题。

另外,sigmoid(softmax)+cross-entropy loss 擅长于学习类间的信息,因为它采用了类间竞争机制,它只关心对于正确标签预测概率的准确性,忽略了其他非正确标签的差异,导致学习到的特征比较散。基于这个问题的优化有很多,比如对softmax进行改进,如L-Softmax、SM-Softmax、AM-Softmax等。

5. 参考

[1]. 博客 - 神经网络的分类模型 LOSS 函数为什么要用 CROSS ENTROPY

[2]. 博客 - Softmax as a Neural Networks Activation Function

[3]. 博客 - A Gentle Introduction to Cross-Entropy Loss Function

[4]. Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[5]损失函数|交叉熵损失函数 (zhihu.com)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值